Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Characterization of Spatial-Temporal Channel Statistics from Indoor Measurement Data at D Band (2403.18713v1)

Published 27 Mar 2024 in cs.IT, eess.SP, and math.IT

Abstract: Millimeter-wave (mmWave) and D Band (110--170~GHz) frequencies are poised to play a pivotal role in the advancement of sixth-generation (6G) systems and beyond, owing to their ability to enhance performance metrics such as capacity, ultra-low latency, and spectral efficiency. This paper concentrates on deriving statistical insights into power, delay, and the number of paths based on measurements conducted across four distinct locations at a center frequency of 143.1 GHz. The findings underscore the suitability of various distributions in characterizing power behavior in line-of-sight (LOS) scenarios, including lognormal, Nakagami, gamma, and beta distributions, whereas the loglogistic distribution gives the optimal fit for power distribution in non-line-of-sight (NLOS) scenarios. Moreover, the exponential distribution shows to be the most appropriate model for the delay distribution in both LOS and NLOS scenarios. In terms of the number of paths, observations indicate a tendency for the highest concentration within the 10 m to 30 m distance range between the transmitter (Tx) and receiver (Rx). These insights shed light on the statistical nature of D band propagation characteristics, which are vital for informing the design and optimization of future 6G communication systems

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. J. Dou, L. Tian, H. Wang, X. Yuan, N. Zhang, and S. Mei, “45GHz propagation channel modeling for an indoor conference scenario,” in in Proc. PIMRC.   IEEE, 2015, pp. 2225–2228.
  2. D. Solomitckii, A. Orsino, S. Andreev, Y. Koucheryavy, and M. Valkama, “Characterization of mm-Wave channel properties at 28 and 60 GHz in factory automation deployments,” in in Proc. WCNC.   IEEE, 2018, pp. 1–6.
  3. R. Naderpour, J. Vehmas, S. Nguyen, J. Järveläinen, and K. Haneda, “Spatio-temporal channel sounding in a street canyon at 15, 28 and 60 GHz,” in in Proc. PIMRC.   IEEE, 2016, pp. 1–6.
  4. B. De Beelde, D. Plets, C. Desset, E. Tanghe, A. Bourdoux, and W. Joseph, “Material characterization and radio channel modeling at D-band frequencies,” IEEE Access, vol. 9, pp. 153 528–153 539, 2021.
  5. M. Wang, Y. Wang, W. Li, J. Ding, C. Bian, X. Wang, C. Wang, C. Li, Z. Zhong, and J. Yu, “Reflection characteristics measurements of indoor wireless link in d-band,” MDPI Sensors, vol. 22, no. 18, p. 6908, 2022.
  6. S. Kim, W. T. Khan, A. Zajić, and J. Papapolymerou, “D-band channel measurements and characterization for indoor applications,” IEEE Trans. Antennas Propag., vol. 63, no. 7, pp. 3198–3207, 2015.
  7. L. Pometcu and R. D’Errico, “An indoor channel model for high data-rate communications in D-band,” IEEE Access, vol. 8, pp. 9420–9433, 2020.
  8. M. F. de Guzman, K. Haneda, and P. Kyösti, “Measurement-based MIMO channel model at 140 GHz,” Mar. 2023. [Online]. Available: https://doi.org/10.5281/zenodo.7640353
  9. M. F. De Guzman, P. Koivumäki, and K. Haneda, “Double-directional multipath data at 140 GHz derived from measurement-based ray-launcher,” in in Proc. VTC-Spring, 2022, pp. 1–6.
  10. S. L. H. Nguyen, J. Järveläinen, A. Karttunen, K. Haneda, and J. Putkonen, “Comparing radio propagation channels between 28 and 140 ghz bands in a shopping mall,” in in Proc. EuCAP, 2018, pp. 1–5.
  11. S. L. H. Nguyen, K. Haneda, J. Järveläinen, A. Karttunen, and J. Putkonen, “Large-scale parameters of spatio-temporal short-range indoor backhaul channels at 140 ghz,” in in Proc. VTC-Spring, 2021, pp. 1–6.
  12. S. Hur, S. Baek, B. Kim, Y. Chang, A. F. Molisch, T. S. Rappaport, K. Haneda, and J. Park, “Proposal on millimeter-wave channel modeling for 5G cellular system,” IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 454–469, 2016.
  13. Y. Chang, S. Baek, S. Hur, Y. Mok, and Y. Lee, “A novel dual-slope mm-Wave channel model based on 3D ray-tracing in urban environments,” in in Proc. PIMRC, 2014, pp. 222–226.
  14. H. Tataria, K. Haneda, A. F. Molisch, M. Shafi, and F. Tufvesson, “Standardization of propagation models for terrestrial cellular systems: A historical perspective,” Int. J. Wireless Inf. Netw., vol. 28, pp. 20–44, 2020.
  15. S. Das, D. Sen, E. Viterbo, A. K. R. Chavva, D. Sharma, and A. Nigam, “Ambit-process-based spatial-wideband MIMO channel model for sub-THz urban microcellular communication,” IEEE Trans. Wireless Commun., vol. 23, no. 1, pp. 559–574, 2024.
  16. E. N. Papasotiriou, A.-A. A. Boulogeorgos, K. Haneda, M. F. de Guzman, and A. Alexiou, “An experimentally validated fading model for thz wireless systems,” Springer Scientific Reports, vol. 11, no. 1, pp. 2045–2322, 2021.
  17. F. J. Massey Jr, “The Kolmogorov-Smirnov test for goodness of fit,” J.American Statistical Assoc., vol. 46, no. 253, pp. 68–78, 1951.
  18. S. Kullback and R. A. Leibler, “On information and sufficiency,” Annals Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com