Papers
Topics
Authors
Recent
2000 character limit reached

Improving Efficiency of Parallel Across the Method Spectral Deferred Corrections

Published 27 Mar 2024 in math.NA, cs.DC, and cs.NA | (2403.18641v2)

Abstract: Parallel-across-the method time integration can provide small scale parallelism when solving initial value problems. Spectral deferred corrections (SDC) with a diagonal sweeper, which is closely related to iterated Runge-Kutta methods proposed by Van der Houwen and Sommeijer, can use a number of threads equal to the number of quadrature nodes in the underlying collocation method. However, convergence speed, efficiency and stability depends critically on the used coefficients. Previous approaches have used numerical optimization to find good parameters. Instead, we propose an ansatz that allows to find optimal parameters analytically. We show that the resulting parallel SDC methods provide stability domains and convergence order very similar to those of well established serial SDC variants. Using a model for computational cost that assumes 80% efficiency of an implementation of parallel SDC we show that our variants are competitive with serial SDC, previously published parallel SDC coefficients as well as Picard iteration, explicit RKM-4 and an implicit fourth-order diagonally implicit Runge-Kutta method.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (2)
Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.