Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computational decomposition and composition technique for approximate solution of nonstationary problems (2403.18472v1)

Published 27 Mar 2024 in math.NA and cs.NA

Abstract: Stable computational algorithms for the approximate solution of the Cauchy problem for nonstationary problems are based on implicit time approximations. Computational costs for boundary value problems for systems of coupled multidimensional equations can be reduced by additive decomposition of the problem operator(s) and composition of the approximate solution using particular explicit-implicit time approximations. Such a technique is currently applied in conditions where the decomposition step is uncomplicated. A general approach is proposed to construct decomposition-composition algorithms for evolution equations in finite-dimensional Hilbert spaces. It is based on two main variants of the decomposition of the unit operator in the corresponding spaces at the decomposition stage and the application of additive operator-difference schemes at the composition stage. The general results are illustrated on the boundary value problem for a second-order parabolic equation by constructing standard splitting schemes on spatial variables and region-additive schemes (domain decomposition schemes).

Citations (2)

Summary

We haven't generated a summary for this paper yet.