Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Connections between metric differentiability and rectifiability (2403.18440v1)

Published 27 Mar 2024 in math.MG

Abstract: We combine Kirchheim's metric differentials with Cheeger charts in order to establish a non-embeddability principle for any collection $\mathcal C$ of Banach (or metric) spaces: if a metric measure space $X$ bi-Lipschitz embeds in some element in $\mathcal C$, and if every Lipschitz map $X\to Y\in \mathcal C$ is differentiable, then $X$ is rectifiable. This gives a simple proof of the rectifiability of Lipschitz differentiability spaces that are bi-Lipschitz embeddable in Euclidean space, due to Kell--Mondino. Our principle also implies a converse to Kirchheim's theorem: if all Lipschitz maps from a domain space to arbitrary targets are metrically differentiable, the domain is rectifiable. We moreover establish the compatibility of metric and w$*$-differentials of maps from metric spaces in the spirit of Ambrosio--Kirchheim.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. L. Ambrosio and B. Kirchheim. Rectifiable sets in metric and Banach spaces. Math. Ann., 318 (3): 527–555, (2000).
  2. Dimensional estimates and rectifiability for measures satisfying linear PDE constraints. Geom. Funct. Anal., 29 (3): 639–658, (2019).
  3. J. Azzam. Poincaré inequalities and uniform rectifiability. Rev. Mat. Iberoam., 37 (6): 2161–2190, (2021).
  4. D. Bate. Structure of measures in Lispchitz differentiability spaces. JAMS 28 (2): 421–482, (2015).
  5. D. Bate. Characterising rectifiable metric spaces using tangent spaces. Invent. Math., 230 (3): 995–1070, (2022).
  6. D. Bate and S. Li. Characterizations of rectifiable metric measure spaces. Ann. Sci. Éc. Norm. Supér. (4), 50(1): 1–37, (2017).
  7. D. Bate and G. Speight. Differentiability, porosity and doubling in metric measure spaces. PAMS, 141(3): 971–985, (2013).
  8. A. Björn and J. Björn. Nonlinear potential theory on metric spaces, volume 17 of EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich, 2011.
  9. J. Cheeger. Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal., 9 (3): 428–517, (1999).
  10. J. Cheeger and B. Kleiner. Generalized differentiation and bi-Lipschitz nonembedding in L1superscript𝐿1L^{1}italic_L start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT. C. R. Acad. Sci. Paris, Ser. I, 343 (2006), 297–301.
  11. J. Cheeger and B. Kleiner. Differentiability of Lipschitz maps from metric measure spaces to Banach spaces with the Radon–Nikodým property. Geom. Funct. Anal. 19 (4), 1017–1028 (2009).
  12. P. Creutz and N. Evseev. An approach to metric space valued Sobolev maps via weak*superscriptweak\text{weak}^{*}weak start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT derivatives. arXiv: 2106.15449, 2021.
  13. G. C. David. Tangents and rectifiability of Ahlfors regular Lipschitz differentiability spaces. Geom. Funct. Anal. 25 (2): 553– 579, (2015).
  14. G. De Philippis, A. Marchese and F. Rindler. On a conjecture of Cheeger. Measure Theory in Non-Smooth Spaces. De Gruyter Open Poland 2017.
  15. J. Heinonen. Lectures on analysis on metric spaces. Universitext. Springer-Verlag, New York, 2001.
  16. Sobolev spaces on metric measure spaces: an approach based on upper gradients. New Mathematical Monographs. Cambridge University Press, United Kingdom, first edition, 2015.
  17. S. Keith. A differentiable structure for metric measure spaces. Adv. Math. 183 (2004) 271–315.
  18. M. Kell and A. Mondino. On the volume measure of non-smooth spaces with Ricci curvature bounded below. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) Vol. XVIII (2018), 593–610.
  19. A. Schioppa. Derivations and Alberti representations. Adv. Math., 293 (2016), 436–528.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com