Connections between metric differentiability and rectifiability (2403.18440v1)
Abstract: We combine Kirchheim's metric differentials with Cheeger charts in order to establish a non-embeddability principle for any collection $\mathcal C$ of Banach (or metric) spaces: if a metric measure space $X$ bi-Lipschitz embeds in some element in $\mathcal C$, and if every Lipschitz map $X\to Y\in \mathcal C$ is differentiable, then $X$ is rectifiable. This gives a simple proof of the rectifiability of Lipschitz differentiability spaces that are bi-Lipschitz embeddable in Euclidean space, due to Kell--Mondino. Our principle also implies a converse to Kirchheim's theorem: if all Lipschitz maps from a domain space to arbitrary targets are metrically differentiable, the domain is rectifiable. We moreover establish the compatibility of metric and w$*$-differentials of maps from metric spaces in the spirit of Ambrosio--Kirchheim.
- L. Ambrosio and B. Kirchheim. Rectifiable sets in metric and Banach spaces. Math. Ann., 318 (3): 527–555, (2000).
- Dimensional estimates and rectifiability for measures satisfying linear PDE constraints. Geom. Funct. Anal., 29 (3): 639–658, (2019).
- J. Azzam. Poincaré inequalities and uniform rectifiability. Rev. Mat. Iberoam., 37 (6): 2161–2190, (2021).
- D. Bate. Structure of measures in Lispchitz differentiability spaces. JAMS 28 (2): 421–482, (2015).
- D. Bate. Characterising rectifiable metric spaces using tangent spaces. Invent. Math., 230 (3): 995–1070, (2022).
- D. Bate and S. Li. Characterizations of rectifiable metric measure spaces. Ann. Sci. Éc. Norm. Supér. (4), 50(1): 1–37, (2017).
- D. Bate and G. Speight. Differentiability, porosity and doubling in metric measure spaces. PAMS, 141(3): 971–985, (2013).
- A. Björn and J. Björn. Nonlinear potential theory on metric spaces, volume 17 of EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich, 2011.
- J. Cheeger. Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal., 9 (3): 428–517, (1999).
- J. Cheeger and B. Kleiner. Generalized differentiation and bi-Lipschitz nonembedding in L1superscript𝐿1L^{1}italic_L start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT. C. R. Acad. Sci. Paris, Ser. I, 343 (2006), 297–301.
- J. Cheeger and B. Kleiner. Differentiability of Lipschitz maps from metric measure spaces to Banach spaces with the Radon–Nikodým property. Geom. Funct. Anal. 19 (4), 1017–1028 (2009).
- P. Creutz and N. Evseev. An approach to metric space valued Sobolev maps via weak*superscriptweak\text{weak}^{*}weak start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT derivatives. arXiv: 2106.15449, 2021.
- G. C. David. Tangents and rectifiability of Ahlfors regular Lipschitz differentiability spaces. Geom. Funct. Anal. 25 (2): 553– 579, (2015).
- G. De Philippis, A. Marchese and F. Rindler. On a conjecture of Cheeger. Measure Theory in Non-Smooth Spaces. De Gruyter Open Poland 2017.
- J. Heinonen. Lectures on analysis on metric spaces. Universitext. Springer-Verlag, New York, 2001.
- Sobolev spaces on metric measure spaces: an approach based on upper gradients. New Mathematical Monographs. Cambridge University Press, United Kingdom, first edition, 2015.
- S. Keith. A differentiable structure for metric measure spaces. Adv. Math. 183 (2004) 271–315.
- M. Kell and A. Mondino. On the volume measure of non-smooth spaces with Ricci curvature bounded below. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) Vol. XVIII (2018), 593–610.
- A. Schioppa. Derivations and Alberti representations. Adv. Math., 293 (2016), 436–528.