Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-Hermitian Topology with Generalized Chiral Symmetry (2403.18268v1)

Published 27 Mar 2024 in cond-mat.mes-hall

Abstract: We study a generalization of chiral symmetry applicable to non-Hermitian systems and its topological consequences on one-dimensional chains. We uncover a rich family of topological phases hosting several chiral flavors characterized not by a single winding number, but a vector of of them. This, in turn, leads to a novel type of bulk-boundary correspondence, where -- in contrast with conventional chiral chains -- some flavors can have topologically stable non-zero charges on both ends. Moreover, we find that the total charge of each flavor can in some cases exceed the magnitude of the highest winding number in the vector invariant. Our work extends the topological classification of the non-Hermitian AIII class along a new axis.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. V. M. Alvarez, J. B. Vargas, and L. F. Torres, Non-hermitian robust edge states in one dimension: Anomalous localization and eigenspace condensation at exceptional points, Physical Review B 97, 121401 (2018).
  2. Y. Xiong, Why does bulk boundary correspondence fail in some non-hermitian topological models, Journal of Physics Communications 2, 035043 (2018).
  3. S. Yao and Z. Wang, Edge states and topological invariants of non-hermitian systems, Physical review letters 121, 086803 (2018).
  4. C. M. Bender and S. Boettcher, Real spectra in non-hermitian hamiltonians having p t symmetry, Physical review letters 80, 5243 (1998).
  5. C. M. Bender, Making sense of non-hermitian hamiltonians, Reports on Progress in Physics 70, 947 (2007).
  6. S. Lieu, Topological phases in the non-hermitian su-schrieffer-heeger model, Physical Review B 97, 045106 (2018).
  7. H. Shen, B. Zhen, and L. Fu, Topological band theory for non-hermitian hamiltonians, Physical review letters 120, 146402 (2018).
  8. H. Zhou and J. Y. Lee, Periodic table for topological bands with non-hermitian symmetries, Physical Review B 99, 10.1103/physrevb.99.235112 (2019).
  9. C.-H. Liu, H. Jiang, and S. Chen, Topological classification of non-hermitian systems with reflection symmetry, Physical Review B 99, 125103 (2019).
  10. G. De Nittis and K. Gomi, On the k-theoretic classification of dynamically stable systems, Reviews in Mathematical Physics 31, 1950003 (2019).
  11. A. M. Marques and R. G. Dias, Generalized lieb’s theorem for noninteracting non-hermitian n𝑛nitalic_n-partite tight-binding lattices, Physical Review B 106, 10.1103/physrevb.106.205146 (2022).
  12. R. Baxter, A simple solvable znsubscript𝑧𝑛z_{n}italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT hamiltonian, Physics Letters A 140, 155 (1989).
  13. J. Alicea and P. Fendley, Topological phases with parafermions: theory and blueprints, Annual Review of Condensed Matter Physics 7, 119 (2016).
  14. K. Zhang, Z. Yang, and C. Fang, Correspondence between winding numbers and skin modes in non-hermitian systems, Physical Review Letters 125, 126402 (2020).
  15. K. Zhang, Z. Yang, and C. Fang, Universal non-hermitian skin effect in two and higher dimensions, Nature Communications 13, 10.1038/s41467-022-30161-6 (2022a).
  16. The magnitude of the winding corresponds to the number of skin modes, and the sign tells us which side of the chain they will localize on; in general, the left and right eigenstates of a non-hermitian hamiltonian are not “the same”. the winding 𝒲ε⁢(hk)subscript𝒲𝜀subscriptℎ𝑘\mathcal{W}_{\varepsilon}(h_{k})caligraphic_W start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT ( italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) around the point ε𝜀\varepsilonitalic_ε will tell us how many right skin modes exist for hℎhitalic_h [23, 22]. for the left eigenstates of hℎhitalic_h, the equation they need to satisfy is ψl†⁢h=ε⁢ψl†subscriptsuperscript𝜓†𝑙ℎ𝜀subscriptsuperscript𝜓†𝑙\psi^{\dagger}_{l}h=\varepsilon\psi^{\dagger}_{l}italic_ψ start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT italic_h = italic_ε italic_ψ start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT, i.e. h†⁢ψl=ε*⁢ψlsuperscriptℎ†subscript𝜓𝑙superscript𝜀subscript𝜓𝑙h^{\dagger}\psi_{l}=\varepsilon^{*}\psi_{l}italic_h start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT = italic_ε start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT, which means that we must instead look at 𝒲ε*⁢(hk†)=−𝒲ε⁢(hk)subscript𝒲superscript𝜀superscriptsubscriptℎ𝑘†subscript𝒲𝜀subscriptℎ𝑘\mathcal{W}_{\varepsilon^{*}}(h_{k}^{\dagger})=-\mathcal{W}_{\varepsilon}(h_{k})caligraphic_W start_POSTSUBSCRIPT italic_ε start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ( italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT ) = - caligraphic_W start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT ( italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ). the left skin modes will localize on the opposite edge compared to the right skin modes.
  17. D. C. Brody, Biorthogonal quantum mechanics, Journal of Physics A: Mathematical and Theoretical 47, 035305 (2013).
  18. E. Edvardsson, J. L. K. König, and M. Stålhammar, Biorthogonal renormalization (2023), arXiv:2212.06004 [quant-ph] .
  19. S. Longhi, D. Gatti, and G. Della Valle, Non-hermitian transparency and one-way transport in low-dimensional lattices by an imaginary gauge field, Physical Review B 92, 094204 (2015a).
  20. S. Longhi, D. Gatti, and G. D. Valle, Robust light transport in non-hermitian photonic lattices, Scientific reports 5, 13376 (2015b).
  21. S. Longhi, Non-hermitian gauged topological laser arrays, Annalen der Physik 530, 1800023 (2018).
  22. Q.-B. Zeng and R. Lü, Evolution of spectral topology in one-dimensional long-range nonreciprocal lattices, Physical Review A 105, 042211 (2022).
  23. J. C. Budich and B. Trauzettel, From the adiabatic theorem of quantum mechanics to topological states of matter, physica status solidi (RRL)–Rapid Research Letters 7, 109 (2013).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com