RoboKeyGen: Robot Pose and Joint Angles Estimation via Diffusion-based 3D Keypoint Generation (2403.18259v1)
Abstract: Estimating robot pose and joint angles is significant in advanced robotics, enabling applications like robot collaboration and online hand-eye calibration.However, the introduction of unknown joint angles makes prediction more complex than simple robot pose estimation, due to its higher dimensionality.Previous methods either regress 3D keypoints directly or utilise a render&compare strategy. These approaches often falter in terms of performance or efficiency and grapple with the cross-camera gap problem.This paper presents a novel framework that bifurcates the high-dimensional prediction task into two manageable subtasks: 2D keypoints detection and lifting 2D keypoints to 3D. This separation promises enhanced performance without sacrificing the efficiency innate to keypoint-based techniques.A vital component of our method is the lifting of 2D keypoints to 3D keypoints. Common deterministic regression methods may falter when faced with uncertainties from 2D detection errors or self-occlusions.Leveraging the robust modeling potential of diffusion models, we reframe this issue as a conditional 3D keypoints generation task. To bolster cross-camera adaptability, we introduce theNormalised Camera Coordinate Space (NCCS), ensuring alignment of estimated 2D keypoints across varying camera intrinsics.Experimental results demonstrate that the proposed method outperforms the state-of-the-art render&compare method and achieves higher inference speed.Furthermore, the tests accentuate our method's robust cross-camera generalisation capabilities.We intend to release both the dataset and code in https://nimolty.github.io/Robokeygen/
- Y. Rizk, M. Awad, and E. W. Tunstel, “Cooperative heterogeneous multi-robot systems,” ACM Computing Surveys (CSUR), vol. 52, pp. 1 – 31, 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:146012430
- T. Taunyazov, W. Sng, H. H. See, B. Z. H. Lim, J. Kuan, A. F. Ansari, B. C. K. Tee, and H. Soh, “Event-driven visual-tactile sensing and learning for robots,” ArXiv, vol. abs/2009.07083, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:220070303
- F. Chaumette, “Image moments : a general and useful set of features for visual servoing,” 2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:6783563
- R. Y. Tsai and R. K. Lenz, “A new technique for fully autonomous and efficient 3d robotics hand/eye calibration,” IEEE Trans. Robotics Autom., vol. 5, pp. 345–358, 1988. [Online]. Available: https://api.semanticscholar.org/CorpusID:30068970
- T. E. Lee, J. Tremblay, T. To, J. Cheng, T. Mosier, O. Kroemer, D. Fox, and S. Birchfield, “Camera-to-robot pose estimation from a single image,” 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 9426–9432, 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:208202164
- Y. Tian, J. Zhang, Z. Yin, and H. Dong, “Robot structure prior guided temporal attention for camera-to-robot pose estimation from image sequence,” 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8917–8926, 2023. [Online]. Available: https://api.semanticscholar.org/CorpusID:260126044
- J. Lu, F. Richter, and M. C. Yip, “Markerless camera-to-robot pose estimation via self-supervised sim-to-real transfer,” 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 21 296–21 306, 2023. [Online]. Available: https://api.semanticscholar.org/CorpusID:257232804
- Y. Labb’e, J. Carpentier, M. Aubry, and J. Sivic, “Single-view robot pose and joint angle estimation via render & compare,” 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1654–1663, 2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:233296915
- A. Simoni, S. Pini, G. Borghi, and R. Vezzani, “Semi-perspective decoupled heatmaps for 3d robot pose estimation from depth maps,” IEEE Robotics and Automation Letters, vol. 7, pp. 11 569–11 576, 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:250311091
- Y. Li, G. Wang, X. Ji, Y. Xiang, and D. Fox, “Deepim: Deep iterative matching for 6d pose estimation,” in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 683–698.
- S. Zakharov, I. Shugurov, and S. Ilic, “Dpod: 6d pose object detector and refiner,” in Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp. 1941–1950.
- H. Wang, S. Sridhar, J. Huang, J. Valentin, S. Song, and L. J. Guibas, “Normalized object coordinate space for category-level 6d object pose and size estimation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 2642–2651.
- J. Zhang, M. Wu, and H. Dong, “Genpose: Generative category-level object pose estimation via diffusion models,” arXiv preprint arXiv:2306.10531, 2023.
- W. Hua, Z. Zhou, J. Wu, H. Huang, Y. Wang, and R. Xiong, “Rede: End-to-end object 6d pose robust estimation using differentiable outliers elimination,” IEEE Robotics and Automation Letters, vol. 6, pp. 2886–2893, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:225070704
- R. Cai, G. Yang, H. Averbuch-Elor, Z. Hao, S. J. Belongie, N. Snavely, and B. Hariharan, “Learning gradient fields for shape generation,” in European Conference on Computer Vision, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:221139756
- M.-Y. Wu, F. Zhong, Y. Xia, and H. Dong, “Targf: Learning target gradient field for object rearrangement,” ArXiv, vol. abs/2209.00853, 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:252070636
- X. Lu, “A review of solutions for perspective-n-point problem in camera pose estimation,” Journal of Physics: Conference Series, vol. 1087, 2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:125876238
- Y. Song and S. Ermon, “Generative modeling by estimating gradients of the data distribution,” in Neural Information Processing Systems, 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:196470871
- P. Vincent, “A connection between score matching and denoising autoencoders,” Neural Computation, vol. 23, pp. 1661–1674, 2011. [Online]. Available: https://api.semanticscholar.org/CorpusID:5560643
- J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” ArXiv, vol. abs/2006.11239, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:219955663
- J. N. Sohl-Dickstein, E. A. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsupervised learning using nonequilibrium thermodynamics,” ArXiv, vol. abs/1503.03585, 2015. [Online]. Available: https://api.semanticscholar.org/CorpusID:14888175
- Y. Song, J. N. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, “Score-based generative modeling through stochastic differential equations,” ArXiv, vol. abs/2011.13456, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:227209335
- Y. Song, L. Shen, L. Xing, and S. Ermon, “Solving inverse problems in medical imaging with score-based generative models,” ArXiv, vol. abs/2111.08005, 2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:244130146
- M. Wu, Y. Wang, H. Dong et al., “Example-based planning via dual gradient fields,” 2022.
- J. Zhang, M.-Y. Wu, and H. Dong, “Genpose: Generative category-level object pose estimation via diffusion models,” ArXiv, vol. abs/2306.10531, 2023. [Online]. Available: https://api.semanticscholar.org/CorpusID:259202743
- H. Ci, M.-Y. Wu, W. Zhu, X. Ma, H. Dong, F. Zhong, and Y. Wang, “Gfpose: Learning 3d human pose prior with gradient fields,” 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4800–4810, 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:254823445
- J. Xu, Z. Xiong, and S. Bhattacharyya, “Pidnet: A real-time semantic segmentation network inspired from pid controller,” ArXiv, vol. abs/2206.02066, 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:249395578
- A. Vaswani, N. M. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in NIPS, 2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:13756489
- T. Jiang, P. Lu, L. Zhang, N. Ma, R. Han, C. Lyu, Y. Li, and K. Chen, “Rtmpose: Real-time multi-person pose estimation based on mmpose,” ArXiv, vol. abs/2303.07399, 2023. [Online]. Available: https://api.semanticscholar.org/CorpusID:257504954
- Y. Li, S. Yang, P. Liu, S. Zhang, Y. Wang, Z. Wang, W. Yang, and S. Xia, “Simcc: A simple coordinate classification perspective for human pose estimation,” in European Conference on Computer Vision, 2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:250280272
- Y. Song, C. Durkan, I. Murray, and S. Ermon, “Maximum likelihood training of score-based diffusion models,” in Neural Information Processing Systems, 2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:235352469
- K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
- J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,” ArXiv, vol. abs/2010.02502, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:222140788
- Q. Dai, J. Zhang, Q. Li, T. Wu, H. Dong, Z. Liu, P. Tan, and H. Wang, “Domain randomization-enhanced depth simulation and restoration for perceiving and grasping specular and transparent objects,” in European Conference on Computer Vision, 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:251402966
- “Blender,” https://www.blender.org/.
- J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revisited,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 4104–4113.
- J. Martinez, R. Hossain, J. Romero, and J. J. Little, “A simple yet effective baseline for 3d human pose estimation,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 2640–2649.
- J. R. Dormand and P. J. Prince, “A family of embedded runge-kutta formulae,” Journal of Computational and Applied Mathematics, vol. 6, pp. 19–26, 1980. [Online]. Available: https://api.semanticscholar.org/CorpusID:122754533