Adaptive TTD Configurations for Near-Field Communications: An Unsupervised Transformer Approach (2403.18146v1)
Abstract: True-time delayers (TTDs) are popular analog devices for facilitating near-field wideband beamforming subject to the spatial-wideband effect. In this paper, an adaptive TTD configuration is proposed for short-range TTDs. Compared to the existing TTD configurations, the proposed one can effectively combat the spatial-widebandd effect for arbitrary user locations and array shapes with the aid of a switch network. A novel end-to-end deep neural network is proposed to optimize the hybrid beamforming with adaptive TTDs for maximizing spectral efficiency. 1) First, based on the U-Net architecture, a near-field channel learning module (NFC-LM) is proposed for adaptive beamformer design through extracting the latent channel response features of various users across different frequencies. In the NFC-LM, an improved cross attention (CA) is introduced to further optimize beamformer design by enhancing the latent feature connection between near-field channel and different beamformers. 2) Second, a switch multi-user transformer (S-MT) is proposed to adaptively control the connection between TTDs and phase shifters (PSs). In the S-MT, an improved multi-head attention, namely multi-user attention (MSA), is introduced to optimize the switch network through exploring the latent channel relations among various users. 3) Third, a multi feature cross attention (MCA) is introduced to simultaneously optimize the NFC-LM and S-MT by enhancing the latent feature correlation between beamformers and switch network. Numerical simulation results show that 1) the proposed adaptive TTD configuration effectively eliminates the spatial-wideband effect under uniform linear array (ULA) and uniform circular array (UCA) architectures, and 2) the proposed deep neural network can provide near optimal spectral efficiency, and solve the multi-user bemformer design and dynamical connection problem in real-time.
- C.-X. Wang, X. You, X. Gao, X. Zhu, Z. Li, C. Zhang, H. Wang, Y. Huang, Y. Chen, H. Haas et al., “On the road to 6G: Visions, requirements, key technologies and testbeds,” IEEE Commun. Surv. Tutor., Second Quart. 2023.
- I. F. Akyildiz, C. Han, and S. Nie, “Combating the distance problem in the millimeter wave and terahertz frequency bands,” IEEE Commun. Mag., vol. 56, no. 6, pp. 102–108, Jun. 2018.
- M. Cui, Z. Wu, Y. Lu, X. Wei, and L. Dai, “Near-field MIMO communications for 6G: Fundamentals, challenges, potentials, and future directions,” IEEE Commun. Mag., vol. 61, no. 1, pp. 40–46, Jan. 2023.
- Y. Liu, J. Xu, Z. Wang, X. Mu, and L. Hanzo, “Near-field communications: What will be different?” arXiv preprint arXiv:2303.04003, 2023.
- F. Gao, B. Wang, C. Xing, J. An, and G. Y. Li, “Wideband beamforming for hybrid massive MIMO terahertz communications,” IEEE J. Sel. Areas Commun, vol. 39, no. 6, pp. 1725–1740, Jun. 2021.
- S. Payami, M. Ghoraishi, and M. Dianati, “Hybrid beamforming for large antenna arrays with phase shifter selection,” IEEE Trans. Wireless Commun., vol. 15, no. 11, pp. 7258–7271, Nov. 2016.
- S. Payami, M. Ghoraishi, M. Dianati, and M. Sellathurai, “Hybrid beamforming with a reduced number of phase shifters for massive MIMO systems,” IEEE Trans. Veh. Technol., vol. 67, no. 6, pp. 4843–4851, Jun. 2018.
- T. E. Bogale, L. B. Le, A. Haghighat, and L. Vandendorpe, “On the number of RF chains and phase shifters, and scheduling design with hybrid analog–digital beamforming,” IEEE Trans. Wireless Commun., vol. 15, no. 5, pp. 3311–3326, May. 2016.
- L. Yan, C. Han, N. Yang, and J. Yuan, “Dynamic-subarray with fixed phase shifters for energy-efficient terahertz hybrid beamforming under partial csi,” IEEE Trans. Wireless Commun., vol. 38, pp. 1–1, Nov. 2022.
- L. Yan, C. Han, and J. Yuan, “Energy-efficient dynamic-subarray with fixed true-time-delay design for terahertz wideband hybrid beamforming,” IEEE J. Sel. Areas Commun, vol. 40, no. 10, pp. 2840–2854, Oct. 2022.
- M. Longbrake, “True time-delay beamsteering for radar,” in in Proc. IEEE Nat. Aerosp. Electron. Conf. (NAECON), Jul. 2012, pp. 246–249.
- R. Rotman, M. Tur, and L. Yaron, “True time delay in phased arrays,” Proc. IEEE, vol. 104, no. 3, pp. 504–518, Mar. 2016.
- K. Spoof, V. Unnikrishnan, M. Zahra, K. Stadius, M. Kosunen, and J. Ryynänen, “True-time-delay beamforming receiver with rf re-sampling,” IEEE Trans. Circuits Syst. I, Reg. Paper, vol. 67, no. 12, pp. 4457–4469, Dec. 2020.
- L. Dai, J. Tan, Z. Chen, and H. V. Poor, “Delay-Phase Precoding for Wideband THz Massive MIMO,” IEEE Trans. Wireless Commun., vol. 21, no. 9, pp. 7271–7286, Sep. 2022.
- M. Cui, L. Dai, R. Schober, and L. Hanzo, “Near-field wideband beamforming for extremely large antenna arrays,” arXiv preprint arXiv:2109.10054, 2021.
- J. Xie, Y. Luo, H. Yang, Z. Liu, and C. Luo, “A Dynamic Group-Connected Design With True-Time-Delay for Wideband THz Beamforming,” IEEE Trans. Veh. Technol., vol. 73, no. 1, pp. 1441–1446, Jan. 2024.
- A. Najjar, M. El-Absi, and T. Kaiser, “Hybrid delay-phase precoding in wideband um-mimo systems under true time delay and phase shifter hardware limitations,” IEEE Trans. Wireless Commun., pp. 1–1, 2023.
- Z. Wang, X. Mu, Y. Liu, and R. Schober, “TTD configurations for near-field beamforming: Parallel, serial, or hybrid?” IEEE Trans. Commun., pp. 1–1, 2024.
- P.-H. Chang and T.-D. Chiueh, “Hybrid beamforming for wideband terahertz massive MIMO communications with low-resolution phase shifters and true-time-delay,” IEEE Trans. Wireless Commun., pp. 1–1, Jan. 2024.
- O. El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, “Spatially sparse precoding in millimeter wave mimo systems,” IEEE Trans. Wireless Commun., vol. 13, no. 3, pp. 1499–1513, Mar. 2014.
- B. Zhai, Y. Zhu, A. Tang, and X. Wang, “Thzprism: Frequency-based beam spreading for terahertz communication systems,” IEEE Wireless Commun. Lett., vol. 9, no. 6, pp. 897–900, Jun. 2020.
- H. He, M. Zhang, S. Jin, C.-K. Wen, and G. Y. Li, “Model-driven deep learning for massive MU-MIMO with finite-alphabet precoding,” IEEE Communi. Lett., vol. 24, no. 10, pp. 2216–2220, Oct. 2020.
- C.-J. Wang, C.-K. Wen, S. Jin, and S.-H. Tsai, “Finite-alphabet precoding for massive mu-mimo with low-resolution dacs,” IEEE Trans. Wireless Commun., vol. 17, no. 7, pp. 4706–4720, Jul. 2018.
- T. Peken, S. Adiga, R. Tandon, and T. Bose, “Deep learning for SVD and hybrid beamforming,” IEEE Trans. Wireless Commun., vol. 19, no. 10, pp. 6621–6642, Oct. 2020.
- A. M. Elbir and A. K. Papazafeiropoulos, “Hybrid precoding for multiuser millimeter wave massive MIMO systems: A deep learning approach,” IEEE Trans. Veh. Technol., vol. 69, no. 1, pp. 552–563, Jan. 2020.
- A. M. Elbir and K. V. Mishra, “Joint antenna selection and hybrid beamformer design using unquantized and quantized deep learning networks,” IEEE Trans. Wireless Commun., vol. 19, no. 3, pp. 1677–1688, Mar. 2019.
- T. X. Vu, S. Chatzinotas, V.-D. Nguyen, D. T. Hoang, D. N. Nguyen, M. Di Renzo, and B. Ottersten, “Machine learning-enabled joint antenna selection and precoding design: From offline complexity to online performance,” IEEE Trans. Wireless Commun., vol. 20, no. 6, pp. 3710–3722, Jun. 2021.
- H. Huang, W. Xia, J. Xiong, J. Yang, G. Zheng, and X. Zhu, “Unsupervised learning-based fast beamforming design for downlink MIMO,” IEEE Access, vol. 7, pp. 7599–7605, 2018.
- T. Lin and Y. Zhu, “Beamforming design for large-scale antenna arrays using deep learning,” IEEE Wireless Commun. Lett., vol. 9, no. 1, pp. 103–107, Jan. 2019.
- H. Hojatian, J. Nadal, J.-F. Frigon, and F. Leduc-Primeau, “Unsupervised deep learning for massive MIMO hybrid beamforming,” IEEE Trans. Wireless Commun., vol. 20, no. 11, pp. 7086–7099, Nov. 2021.
- Z. Liu, Y. Yang, F. Gao, T. Zhou, and H. Ma, “Deep unsupervised learning for joint antenna selection and hybrid beamforming,” IEEE Trans. Commun, vol. 70, no. 3, pp. 1697–1710, Mar. 2022.
- K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.(CVPR), Jun. 2016, pp. 770–778.
- X. Zhao, U. Shah, O. Glubokov, and J. Oberhammer, “Micromachined subterahertz waveguide-integrated phase shifter utilizing supermode propagation,” IEEE Trans. Microw. Theory Techn., vol. 69, no. 7, pp. 3219–3227, Jul. 2021.
- J.-C. Jeong, I.-B. Yom, J.-D. Kim, W.-Y. Lee, and C.-H. Lee, “A 6–18-GHz GaAs multifunction chip with 8-bit true time delay and 7-bit amplitude control,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 5, pp. 2220–2230, May 2018.
- Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3D U-Net: learning dense volumetric segmentation from sparse annotation,” in in Proc. Int. Conf. Med. Image Comput. Comput.-Assisted Intervention. Springer, Aug. 2016, pp. 424–432.
- O. Petit, N. Thome, C. Rambour, L. Themyr, T. Collins, and L. Soler, “U-net transformer: Self and cross attention for medical image segmentation,” in in Proc. Int. Workshop Mach. Learn. Med. Imag. Springer, Sep. 2021, pp. 267–276.
- T. Zhou, S. Canu, P. Vera, and S. Ruan, “Latent correlation representation learning for brain tumor segmentation with missing MRI modalities,” IEEE Trans. Image Process., vol. 30, pp. 4263–4274, Apr. 2021.
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. Adv. Neural Inf. Process. Syst., vol. 30, pp. 5998–6008, Dec. 2017.
- Y. Liu, Z. Wang, J. Xu, C. Ouyang, X. Mu, and R. Schober, “Near-field communications: A tutorial review,” IEEE Open J. Commun. Soc, vol. 4, pp. 1999–2049, Aug. 2023.
- R. L. Graham, D. E. Knuth, O. Patashnik, and S. Liu, “Concrete mathematics. reading,” MA, USA: Addison-Wesley, 1989.
- I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. Chance et al., “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf., vol. 203, no. 130, pp. 3–69, Nov. 2017.