Antiscarring in Chaotic Quantum Wells (2403.18081v1)
Abstract: Chaos plays a crucial role in numerous natural phenomena, but its quantum nature has remained large elusive. One intriguing quantum-chaotic phenomenon is the scarring of a single-particle wavefunction, where the quantum probability density is enhanced in the vicinity of a classical periodic orbit. These quantum scars illustrate the quantum suppression of classical chaos, offering a unique way to explore the classical-quantum relationship beyond conventional limits. In this study, we establish an ergodicity theorem for slacking a group of adjacent eigenstates, revealing the aspect of antiscarring -- the reduction of probability density along a periodic orbit generating the corresponding scars. We thereafter apply these two concepts to variational scars in a disordered quantum well, and finally discuss their broader implications, suggesting potential experimental approaches to observe this phenomenon.
- S. Strogatz, Nonlinear Dynamics And Chaos, Studies in nonlinearity (Sarat Book House, 2007).
- E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20, 130 (1963).
- A. Einstein, Zum quantensatz von sommerfeld und epstein, Verh. Dtsch. Phys. Ges. 19, 82 (1917).
- A. D. Stone, Einstein’s unknown insight and the problem of quantizing chaos, Phys. Today 58, 37 (2005).
- M. Berry, Quantum chaology, not quantum chaos, Phys. Scripta 40, 335 (1989a).
- E. J. Heller and S. Tomsovic, Postmodern quantum mechanics, Phys. Today 46, 38 (2008).
- R. Jensen, Quantum chaos, Nature (London) 355, 311–318 (1992a).
- R. Jensen, Bringing order out of chaos, Nature (London) 355, 591–592 (1992b).
- H. Goldstein, C. Poole, and J. Safko, Classical Mechanics: Pearson New International Edition (Pearson Education Limited, 2014).
- K. Vogtmann, A. Weinstein, and V. Arnold, Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics (Springer New York, 1997).
- M. Gutzwiller, Chaos in Classical and Quantum Mechanics, Interdisciplinary Applied Mathematics (Springer New York, 1991).
- H.-J. Stöckmann, Quantum Chaos: An Introduction (Cambridge University Press, 1999).
- K. Nakamura and T. Harayama, Quantum Chaos and Quantum Dots, Mesoscopic physics and nanotechnology (Oxford University Press, 2004).
- F. Haake, Quantum Signatures of Chaos, Springer series in synergetics (Springer-Verlag, 1991).
- K. Nakamura, Quantum versus Chaos: Questions Emerging from Mesoscopic Cosmos, Fundamental Theories of Physics (Springer Netherlands, 2010).
- K. Nakamura, Quantum Chaos: A New Paradigm of Nonlinear Dynamics, Cambridge Nonlinear Science Series (Cambridge University Press, 1994).
- G. Casati and B. Chirikov, Quantum Chaos: Between Order and Disorder (Cambridge University Press, 1995).
- M. V. Berry, Regular and irregular semiclassical wavefunctions, J. Phys. A 10, 2083 (1977).
- P. W. O’Connor and E. J. Heller, Quantum localization for a strongly classically chaotic system, Phys. Rev. Lett. 61, 2288 (1988).
- M. C. Gutzwiller, Periodic orbits and classical quantization conditions, J. Math. Phys 12, 343 (1971).
- A. I. Shnirel’man, Ergodic properties of eigenfunctions, Uspekhi Mat. Nauk 29, 181 (1974).
- Y. Colin de Verdiére, Ergodicité et fonctions propres du laplacien, Comm. Math. Phys. 102, 497 (1985).
- S. Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J. 55, 919 (1987).
- E. J. Heller, The Semiclassical Way to Dynamics and Spectroscopy (Princeton University Press, 2018).
- E. J. Heller, Bound-state eigenfunctions of classically chaotic hamiltonian systems: Scars of periodic orbits, Phys. Rev. Lett. 53, 1515 (1984).
- L. Kaplan and E. J. Heller, Linear and nonlinear theory of eigenfunction scars, Ann. Phys. (N. Y.) 264, 171 (1998).
- L. Kaplan, Scars in quantum chaotic wavefunctions, Nonlinearity 12, R1 (1999a).
- E. B. Bogomolny”, Smoothed wave functions of chaotic quantum systems, Physica D: Nonlinear Phenomena 31, 169 (1988).
- M. V. Berry, Quantum scars of classical closed orbits in phase space, Proc. R. Soc. Lond. A 423, 219 (1989b).
- L. Kaplan and E. J. Heller, Measuring scars of periodic orbits, Phys. Rev. E 59, 6609 (1999).
- M. Kuś, J. Zakrzewski, and K. Życzkowski, Quantum scars on a sphere, Phys. Rev. A 43, 4244 (1991).
- G. M. D’Ariano, L. R. Evangelista, and M. Saraceno, Classical and quantum structures in the kicked-top model, Phys. Rev. A 45, 3646 (1992).
- S. Tomsovic and E. J. Heller, Semiclassical construction of chaotic eigenstates, Phys. Rev. Lett. 70, 1405 (1993).
- O. Agam and S. Fishman, Quantum eigenfunctions in terms of periodic orbits of chaotic systems, J. Phys. A Math. 26, 2113 (1993).
- O. Bohigas, S. Tomsovic, and D. Ullmo, Manifestations of classical phase space structures in quantum mechanics, Phys. rep. 223, 43 (1993).
- E. E. Narimanov and A. D. Stone, Origin of strong scarring of wave functions in quantum wells in a tilted magnetic field, Phys. Rev. Lett. 80, 49 (1998).
- A. Hönig and D. Wintgen, Spectral properties of strongly perturbed coulomb systems: Fluctuation properties, Phys. Rev. A 39, 5642 (1989).
- H.-J. Stöckmann and J. Stein, “quantum” chaos in billiards studied by microwave absorption, Phys. Rev. Lett. 64, 2215 (1990).
- S. Sridhar, Experimental observation of scarred eigenfunctions of chaotic microwave cavities, Phys. Rev. Lett. 67, 785 (1991).
- J. Stein and H.-J. Stöckmann, Experimental determination of billiard wave functions, Phys. Rev. Lett. 68, 2867 (1992).
- J. Nöckel and A. Stone, Ray and wave chaos in asymmetric resonant optical cavities, Nature 385, 45 (1997).
- P. A. Chinnery and V. F. Humphrey, Experimental visualization of acoustic resonances within a stadium-shaped cavity, Phys. Rev. E 53, 272 (1996).
- J. Larson, B. M. Anderson, and A. Altland, Chaos-driven dynamics in spin-orbit-coupled atomic gases, Phys. Rev. A 87, 013624 (2013).
- E. Bogomolny and C. Schmit, Structure of wave functions of pseudointegrable billiards, Phys. Rev. Lett. 92, 244102 (2004).
- K. Muller and D. Wintgen, Scars in wavefunctions of the diamagnetic kepler problem, J. Phys. B 27, 2693 (1994).
- A. Kudrolli, M. C. Abraham, and J. P. Gollub, Scarred patterns in surface waves, Phys. Rev. E 63, 026208 (2001).
- D. Wisniacki and G. G. Carlo, Scarring in open quantum systems, Phys. Rev. E 77, 045201 (2008).
- R. Akis, D. K. Ferry, and J. P. Bird, Wave function scarring effects in open stadium shaped quantum dots, Phys. Rev. Lett. 79, 123 (1997).
- D. K. Ferry, R. Akis, and J. P. Bird, Einselection in action: Decoherence and pointer states in open quantum dots, Phys. Rev. Lett. 93, 026803 (2004).
- L. Kaplan, Scar and antiscar quantum effects in open chaotic systems, Phys. Rev. E 59, 5325 (1999b).
- H. U. Baranger, R. A. Jalabert, and A. D. Stone, Weak localization and integrability in ballistic cavities, Phys. Rev. Lett. 70, 3876 (1993).
- R. A. Jalabert, H. U. Baranger, and A. D. Stone, Conductance fluctuations in the ballistic regime: A probe of quantum chaos?, Phys. Rev. Lett. 65, 2442 (1990).
- M. Serbyn, D. A. Abanin, and Z. Papić, Quantum many-body scars and weak breaking of ergodicity, Nat. Phys. 17, 675 (2021).
- Q. Hummel, K. Richter, and P. Schlagheck, Genuine many-body quantum scars along unstable modes in bose-hubbard systems, Phys. Rev. Lett. 130, 250402 (2023).
- A. M. Alhambra, A. Anshu, and H. Wilming, Revivals imply quantum many-body scars, Phys. Rev. B 101, 205107 (2020).
- S. Pai and M. Pretko, Dynamical scar states in driven fracton systems, Phys. Rev. Lett. 123, 136401 (2019).
- K. Bull, I. Martin, and Z. Papić, Systematic construction of scarred many-body dynamics in 1d lattice models, Phys. Rev. Lett. 123, 030601 (2019).
- D. K. Mark, C.-J. Lin, and O. I. Motrunich, Unified structure for exact towers of scar states in the affleck-kennedy-lieb-tasaki and other models, Phys. Rev. B 101, 195131 (2020).
- B. van Voorden, J. c. v. Minář, and K. Schoutens, Quantum many-body scars in transverse field ising ladders and beyond, Phys. Rev. B 101, 220305 (2020).
- N. Shiraishi and T. Mori, Systematic construction of counterexamples to the eigenstate thermalization hypothesis, Phys. Rev. Lett. 119, 030601 (2017).
- C.-J. Lin and O. I. Motrunich, Exact quantum many-body scar states in the rydberg-blockaded atom chain, Phys. Rev. Lett. 122, 173401 (2019).
- K. Mizuta, K. Takasan, and N. Kawakami, Exact floquet quantum many-body scars under rydberg blockade, Phys. Rev. Research 2, 033284 (2020).
- S. Moudgalya, N. Regnault, and B. A. Bernevig, η𝜂\etaitalic_η-pairing in hubbard models: From spectrum generating algebras to quantum many-body scars, Phys. Rev. B 102, 085140 (2020a).
- T. Iadecola and M. Schecter, Quantum many-body scar states with emergent kinetic constraints and finite-entanglement revivals, Phys. Rev. B 101, 024306 (2020).
- K. Bull, J.-Y. Desaules, and Z. Papić, Quantum scars as embeddings of weakly broken lie algebra representations, Phys. Rev. B 101, 165139 (2020).
- V. Khemani, C. R. Laumann, and A. Chandran, Signatures of integrability in the dynamics of rydberg-blockaded chains, Phys. Rev. B 99, 161101 (2019).
- I. Mondragon-Shem, M. G. Vavilov, and I. Martin, Fate of quantum many-body scars in the presence of disorder, PRX Quantum 2, 030349 (2021).
- P. J. J. Luukko and J.-M. Rost, Polyatomic trilobite rydberg molecules in a dense random gas, Phys. Rev. Lett. 119, 203001 (2017).
- K.-H. Ahn, K. Richter, and I.-H. Lee, Addition spectra of chaotic quantum dots: Interplay between interactions and geometry, Phys. Rev. Lett. 83, 4144 (1999).
- R. Ketzmerick, Fractal conductance fluctuations in generic chaotic cavities, Phys. Rev. B 54, 10841 (1996).
- K. Nakamura and H. Thomas, Quantum billiard in a magnetic field: Chaos and diamagnetism, Phys. Rev. Lett. 61, 247 (1988).
- I. Magnúsdóttir and V. Gudmundsson, Magnetization of noncircular quantum dots, Phys. Rev. B 61, 10229 (2000).
- Z.-L. Ji and K.-F. Berggren, Transition from chaotic to regular behavior of electrons in a stadium-shaped quantum dot in a perpendicular magnetic field, Phys. Rev. B 52, 1745 (1995).
- A. D. Güçlü, J.-S. Wang, and H. Guo, Disordered quantum dots: A diffusion quantum monte carlo study, Phys. Rev. B 68, 035304 (2003).
- S.-Y. Lee and S. C. Creagh, Wavefunction statistics using scar states, Ann. Phys. (N.Y.) 307, 392 (2003).
- W. E. Bies, L. Kaplan, and E. J. Heller, Scarring effects on tunneling in chaotic double-well potentials, Phys. Rev. E 64, 016204 (2001).
- J. Wang, C.-H. Lai, and Y. Gu, Ergodicity and scars of the quantum cat map in the semiclassical regime, Phys. Rev. E 63, 056208 (2001).
- J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43, 2046 (1991).
- M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50, 888 (1994).
- M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems, Nature 452, 854 (2008).
- J. M. Deutsch, Eigenstate thermalization hypothesis, Rep. Prog. Phys. 81, 082001 (2018).
- K. Hirose and N. S. Wingreen, Ground-state energy and spin in disordered quantum dots, Phys. Rev. B 65, 193305 (2002).
- K. Hirose, F. Zhou, and N. S. Wingreen, Density-functional theory of spin-polarized disordered quantum dots, Phys. Rev. B 63, 075301 (2001).
- S. M. Reimann and M. Manninen, Electronic structure of quantum dots, Rev. Mod. Phys. 74, 1283 (2002).
- L. P. Kouwenhoven, D. G. Austing, and S. Tarucha, Few-electron quantum dots, Rep. Prog. Phys. 64, 701 (2001).
- N. A. Bruce and P. A. Maksym, Quantum states of interacting electrons in a real quantum dot, Phys. Rev. B 61, 4718 (2000).
- M. Stopa, Quantum dot self-consistent electronic structure and the coulomb blockade, Phys. Rev. B 54, 13767 (1996).
- M. C. Rogge, E. Räsänen, and R. J. Haug, Interaction-induced spin polarization in quantum dots, Phys. Rev. Lett. 105, 046802 (2010).
- M. Mendoza and P. A. Schulz, Wave-function mapping conditions in open quantum dot structures, Phys. Rev. B 68, 205302 (2003a).
- J. Bird, Electron Transport in Quantum Dots (Springer US, 2013).
- M. Reynolds and M. Shouppe, Closed, spirograph-like orbits in power law central potentials, arXiv preprint arXiv:1008.0559 (2010).
- A. N. Kolmogorov, On dynamical systems with an integral invariant on the torus, Dokl. Akad. Nauk SSSR 93, 763 (1953).
- V. I. Arnold, Proof of a theorem of a. n. kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the hamiltonian, Uspehi Mat. Nauk 18, 13 (1963).
- J. Moser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen, II , 1 (1962).
- P. Luukko and E. Räsänen, Imaginary time propagation code for large-scale two-dimensional eigenvalue problems in magnetic fields, Comput. Phys. Commun. 184, 769 (2013).
- M. Aichinger, S. A. Chin, and E. Krotscheck, Fourth-order algorithms for solving local schrödinger equations in a strong magnetic field, Comput. Phys. Commun. 171, 197 (2005).
- D. R. Grempel, R. E. Prange, and S. Fishman, Quantum dynamics of a nonintegrable system, Phys. Rev. A 29, 1639 (1984).
- D. L. Shepelyansky, Localization of diffusive excitation in multi-level systems, Physica D 28, 103 (1987).
- F. M. Izrailev, Simple models of quantum chaos: Spectrum and eigenfunctions, Phys. Rep. 196, 299 (1990).
- Y. F. Chen, K. F. Huang, and Y. P. Lan, Localization of wave patterns on classical periodic orbits in a square billiard, Phys. Rev. E 66, 046215 (2002).
- W. Li, L. E. Reichl, and B. Wu, Quantum chaos in a ripple billiard, Phys. Rev. E 65, 056220 (2002).
- M. S. Kumar and B. Dutta-Roy, Commensurate anisotropic oscillator su(2)𝑠𝑢2su(2)italic_s italic_u ( 2 ) coherent states and the classical limit, J. Phys. A 41, 075306 (2008).
- Y. F. Chen, Geometry of classical periodic orbits and quantum coherent states in coupled oscillators with su(2) transformations, Phys. Rev. A 83, 032124 (2011).
- Y. F. Chen and K. F. Huang, Vortex structure of quantum eigenstates and classical periodic orbits in two-dimensional harmonic oscillators, J. Phys. A 36, 7751 (2003).
- M. Mendoza and P. Schulz, Wave-function mapping conditions in open quantum dot structures, Phys Rev. B 68, 205302 (2003b).