Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

R2D2 image reconstruction with model uncertainty quantification in radio astronomy (2403.18052v2)

Published 26 Mar 2024 in astro-ph.IM, cs.LG, eess.IV, and eess.SP

Abstract: The Residual-to-Residual DNN series for high-Dynamic range imaging'' (R2D2) approach was recently introduced for Radio-Interferometric (RI) imaging in astronomy. R2D2's reconstruction is formed as a series of residual images, iteratively estimated as outputs of Deep Neural Networks (DNNs) taking the previous iteration's image estimate and associated data residual as inputs. In this work, we investigate the robustness of the R2D2 image estimation process, by studying the uncertainty associated with its series of learned models. Adopting an ensemble averaging approach, multiple series can be trained, arising from different random DNN initializations of the training process at each iteration. The resulting multiple R2D2 instances can also be leveraged to generateR2D2 samples'', from which empirical mean and standard deviation endow the algorithm with a joint estimation and uncertainty quantification functionality. Focusing on RI imaging, and adopting a telescope-specific approach, multiple R2D2 instances were trained to encompass the most general observation setting of the Very Large Array (VLA). Simulations and real-data experiments confirm that: (i) R2D2's image estimation capability is superior to that of the state-of-the-art algorithms; (ii) its ultra-fast reconstruction capability (arising from series with only few DNNs) makes the computation of multiple reconstruction samples and of uncertainty maps practical even at large image dimension; (iii) it is characterized by a very low model uncertainty.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. D. Briggs, “High fidelity interferometric imaging: Robust weighting and nnls deconvolution,” in AAS, vol. 187, 1995, pp. 112–02.
  2. J. Högbom, “Aperture synthesis with a non-regular distribution of interferometer baselines,” A&AS, vol. 15, p. 417, 1974.
  3. S. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3397–3415, 1993.
  4. Y. Wiaux, L. Jacques, G. Puy, A. M. Scaife, and P. Vandergheynst, “Compressed sensing imaging techniques for radio interferometry,” MNRAS, vol. 395, no. 3, pp. 1733–1742, 2009.
  5. F. Li, T. J. Cornwell, and F. de Hoog, “The application of compressive sampling to radio astronomy-I. Deconvolution,” A&A, vol. 528, p. A31, 2011.
  6. R. E. Carrillo, J. D. McEwen, and Y. Wiaux, “Sparsity Averaging Reweighted Analysis (SARA): a novel algorithm for radio-interferometric imaging,” MNRAS, vol. 426, no. 2, pp. 1223–1234, 2012.
  7. A. Dabbech, C. Ferrari, D. Mary, E. Slezak, O. Smirnov, and J. S. Kenyon, “Moresane: Model REconstruction by Synthesis-ANalysis Estimators-a sparse deconvolution algorithm for radio interferometric imaging,” A&A, vol. 576, p. A7, 2015.
  8. A. Repetti and Y. Wiaux, “A forward-backward algorithm for reweighted procedures: application to radio-astronomical imaging,” in Proc. IEEE ICASSP 2020, 2020, pp. 1434–1438.
  9. M. Terris, A. Dabbech, C. Tang, and Y. Wiaux, “Image reconstruction algorithms in radio interferometry: From handcrafted to learned regularization denoisers,” MNRAS, vol. 518, no. 1, pp. 604–622, 09 2022.
  10. L. Connor, K. L. Bouman, V. Ravi, and G. Hallinan, “Deep radio-interferometric imaging with POLISH: DSA-2000 and weak lensing,” MNRAS, vol. 514, no. 2, pp. 2614–2626, 2022.
  11. Schmidt, K., Geyer, F., Fröse, S., Blomenkamp, P.-S., Brüggen, M., de Gasperin, F., Elsässer, D., and Rhode, W., “Deep learning-based imaging in radio interferometry,” A&A, vol. 664, p. A134, 2022.
  12. A. Aghabiglou, C. S. Chu, A. Jackson, A. Dabbech, and Y. Wiaux, “Ultra-fast high-dynamic range imaging of cygnus a with the R2D2 deep neural network series,” preprint arXiv:2309.03291, 12 2023.
  13. A. Aghabiglou, S. C. Chu, A. Dabbech, and Y. Wiaux, “The R2D2 deep neural network series paradigm for fast precision imaging in radio astronomy,” preprint arXiv:2403.05452, 2024.
  14. R. Laumont, V. D. Bortoli, A. Almansa, J. Delon, A. Durmus, and M. Pereyra, “Bayesian imaging using plug & play priors: when langevin meets tweedie,” SIAM J. Imaging Sci., vol. 15, no. 2, pp. 701–737, 2022.
  15. S. Mukherjee, A. Hauptmann, O. Öktem, M. Pereyra, and C.-B. Schönlieb, “Learned reconstruction methods with convergence guarantees: A survey of concepts and applications,” IEEE Signal Process. Mag., vol. 40, no. 1, pp. 164–182, 2023.
  16. M. Terris, C. Tang, A. Jackson, and Y. Wiaux, “Plug-and-play imaging with model uncertainty quantification in radio astronomy,” preprint arXiv:2312.07137, 2023.
  17. D. Narnhofer, A. Effland, E. Kobler, K. Hammernik, F. Knoll, and T. Pock, “Bayesian uncertainty estimation of learned variational mri reconstruction,” IEEE Trans. Med. Imaging, vol. 41, no. 2, pp. 279–291, 2021.
  18. S. Lahlou, M. Jain, H. Nekoei, V. I. Butoi, P. Bertin, J. Rector-Brooks, M. Korablyov, and Y. Bengio, “Deup: Direct epistemic uncertainty prediction,” preprint arXiv:2102.08501, 2021.
  19. O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” in MICCAI 2015, 2015, pp. 234–241.
  20. T. Shimwell, M. Hardcastle, C. Tasse, P. Best, H. Röttgering, W. Williams, A. Botteon, A. Drabent, A. Mechev, A. Shulevski et al., “The LOFAR Two-metre Sky Survey-V. Second data release,” A&A, vol. 659, p. A1, 2022.
  21. A. Botteon, T. Shimwell, R. Cassano, V. Cuciti, X. Zhang, L. Bruno, L. Camillini, R. Natale, A. Jones, F. Gastaldello et al., “The Planck clusters in the LOFAR sky-I. LoTSS-DR2: New detections and sample overview,” A&A, vol. 660, p. A78, 2022.

Summary

We haven't generated a summary for this paper yet.