Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Tale of Three Scales: the Planck, the Species, and the Black Hole Scales (2403.18005v3)

Published 26 Mar 2024 in hep-th

Abstract: Quantum gravity (QG) has a natural cutoff given by the Planck scale $M_{\rm pl}$. However, it is known that the EFT of gravity can break down at a lower scale, the species scale $\Lambda_s\lesssim M_{\rm pl}$, if there are light species of particles. Here we point out that there is a third scale $\Lambda_{\rm BH}\lesssim \Lambda_s\lesssim M_{\rm pl}$, which marks the inverse length (or the temperature) of the smallest black hole where the EFT gives a correct description of its entropy and free energy. This latter scale is hard to detect from the viewpoint of EFT as it represents a phase transition to a state with lower free energy. We illustrate this using examples drawn from consistent QG landscape. In particular $\Lambda_{\rm BH}$ gets related to Gregory--Laflamme transition in the decompactification limits of quantum gravity and to the Horowitz--Polchinski solution in the light perturbative string limits. We propose the existence of $\Lambda_{\rm BH}$ marking the temperature at which neutral black holes undergo a phase transition, as a new Swampland condition for all consistent quantum theories of gravity. In the asymptotic regimes of field space $\Lambda_{\rm BH}$ is close to the mass scale of the lightest tower but deviates from it as we move inwards in the moduli space.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. G. Dvali, Black Holes and Large N Species Solution to the Hierarchy Problem, Fortsch. Phys. 58, 528 (2010), arXiv:0706.2050 [hep-th] .
  2. G. Dvali and D. Lust, Evaporation of Microscopic Black Holes in String Theory and the Bound on Species, Fortsch. Phys. 58, 505 (2010), arXiv:0912.3167 [hep-th] .
  3. G. Dvali and C. Gomez, Species and Strings,   (2010), arXiv:1004.3744 [hep-th] .
  4. G. Dvali, C. Gomez, and D. Lust, Black Hole Quantum Mechanics in the Presence of Species, Fortsch. Phys. 61, 768 (2013), arXiv:1206.2365 [hep-th] .
  5. R. Gregory and R. Laflamme, Black strings and p-branes are unstable, Phys. Rev. Lett. 70, 2837 (1993), arXiv:hep-th/9301052 .
  6. S.-J. Lee, W. Lerche, and T. Weigand, Emergent strings from infinite distance limits, JHEP 02, 190, arXiv:1910.01135 [hep-th] .
  7. J. Calderón-Infante, M. Delgado, and A. M. Uranga, Emergence of species scale black hole horizons, JHEP 01, 003, arXiv:2310.04488 [hep-th] .
  8. M. B. Green and P. Vanhove, D instantons, strings and M theory, Phys. Lett. B 408, 122 (1997), arXiv:hep-th/9704145 .
  9. D. J. Gross, M. J. Perry, and L. G. Yaffe, Instability of Flat Space at Finite Temperature, Phys. Rev. D 25, 330 (1982).
  10. H. S. Reall, Classical and thermodynamic stability of black branes, Phys. Rev. D 64, 044005 (2001), arXiv:hep-th/0104071 .
  11. G. W. Gibbons and S. W. Hawking, Action Integrals and Partition Functions in Quantum Gravity, Phys. Rev. D 15, 2752 (1977).
  12. R. Hagedorn, Statistical thermodynamics of strong interactions at high-energies, Nuovo Cim. Suppl. 3, 147 (1965).
  13. B. Sathiapalan, Vortices on the String World Sheet and Constraints on Toral Compactification, Phys. Rev. D 35, 3277 (1987).
  14. J. J. Atick and E. Witten, The Hagedorn Transition and the Number of Degrees of Freedom of String Theory, Nucl. Phys. B 310, 291 (1988).
  15. G. T. Horowitz and J. Polchinski, Selfgravitating fundamental strings, Phys. Rev. D 57, 2557 (1998), arXiv:hep-th/9707170 .
  16. Y. Chen, J. Maldacena, and E. Witten, On the black hole/string transition, JHEP 01, 103, arXiv:2109.08563 [hep-th] .
  17. B. Balthazar, J. Chu, and D. Kutasov, On Small Black Holes in String Theory,   (2022), arXiv:2210.12033 [hep-th] .
  18. E. Witten, Constraints on Supersymmetry Breaking, Nucl. Phys. B 202, 253 (1982).
  19. Y. Chen, Revisiting R4superscript𝑅4R^{4}italic_R start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT higher curvature corrections to black holes,   (2021), arXiv:2107.01533 [hep-th] .
  20. A. Castellano, I. Ruiz, and I. Valenzuela, A Universal Pattern in Quantum Gravity at Infinite Distance,   (2023a), arXiv:2311.01501 [hep-th] .
  21. A. Castellano, I. Ruiz, and I. Valenzuela, Stringy Evidence for a Universal Pattern at Infinite Distance,   (2023b), arXiv:2311.01536 [hep-th] .
  22. D. van de Heisteeg, C. Vafa, and M. Wiesner, Bounds on Species Scale and the Distance Conjecture, Fortsch. Phys. 71, 2300143 (2023b), arXiv:2303.13580 [hep-th] .
Citations (9)

Summary

We haven't generated a summary for this paper yet.