Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Natural Metric-Affine Inflation (2403.18004v3)

Published 26 Mar 2024 in hep-ph, astro-ph.CO, gr-qc, and hep-th

Abstract: We consider here natural inflation in the low energy (two-derivative) metric-affine theory containing only the minimal degrees of freedom in the inflationary sector, i.e. the massless graviton and the pseudo-Nambu-Goldstone boson (PNGB). This theory contains the Ricci-like and parity-odd Holst invariants together with non-minimal couplings between the PNGB and the above-mentioned invariants. The Palatini and Einstein-Cartan realizations of natural inflation are particular cases of our construction. Explicit models of this type featuring non-minimal couplings are shown to emerge from the microscopic dynamics of a QCD-like theory with an either sub-Planckian or trans-Planckian confining scale and that is renormalizable on Minkowski spacetime. Moreover, for these models, we find regions of the parameter space where the inflationary predictions agree with the most recent observations at the $2\sigma$ level. We find that in order to enter the $1\sigma$ region it is necessary (and sufficient) to have a finite value of the Barbero-Immirzi parameter and a sizable non-minimal coupling between the inflaton and the Holst invariant (with sign opposite to the Barbero-Immirzi parameter). Indeed, in this case the potential of the canonically normalized inflaton develops a plateau as shown analytically.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. J. Crowder and N. J. Cornish, “Beyond LISA: Exploring future GW missions,” Phys. Rev. D 72, 083005 (2005) doi:10.1103/PhysRevD.72.083005 [arXiv:gr-qc/0506015].
  2. G. Harry, P. Fritschel, D. Shaddock, W. Folkner and E. Phinney, “Laser interferometry for the big bang observer,” Class. Quant. Grav. 23, 4887-4894 (2006). V. Corbin and N. J. Cornish, “Detecting the cosmic GW background with the big bang observer,” Class. Quant. Grav. 23, 2435-2446 (2006) doi:10.1088/0264-9381/23/7/014 [arXiv:gr-qc/0512039].
  3. K. Freese, J. A. Frieman and A. V. Olinto, “Natural inflation with pseudo - Nambu-Goldstone bosons,” Phys. Rev. Lett.  65 (1990) 3233 doi:10.1103/PhysRevLett.65.3233. F. C. Adams, J. R. Bond, K. Freese, J. A. Frieman and A. V. Olinto, “Natural inflation: Particle physics models, power law spectra for large scale structure, and constraints from COBE,” Phys. Rev. D 47 (1993) 426 doi:10.1103/PhysRevD.47.426 [arXiv:hep-ph/9207245].
  4. G. ’t Hooft, “Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking,” NATO Sci. Ser. B 59 (1980), 135-157 doi:10.1007/978-1-4684-7571-5_9
  5. A. Salvio, “Natural-scalaron inflation,” JCAP 10 (2021), 011 doi:10.1088/1475-7516/2021/10/011 [arXiv:2107.03389].
  6. A. Salvio, “Quasi-Conformal Models and the Early Universe,” Eur. Phys. J. C 79 (2019) no.9, 750 doi:10.1140/epjc/s10052-019-7267-5 [arXiv:1907.00983].
  7. N. Bostan, “Non-minimally coupled Natural Inflation: Palatini and Metric formalism with the recent BICEP/Keck,” JCAP 02 (2023), 063 doi:10.1088/1475-7516/2023/02/063 [arXiv:2209.02434].
  8. M. AlHallak, K. K. A. Said, N. Chamoun and M. S. El-Daher, “On Warm Natural Inflation and Planck 2018 Constraints,” Universe 9 (2023) no.2, 80 doi:10.3390/universe9020080 [arXiv:2211.07775].
  9. A. Salvio and S. Sciusco, “(Multi-field) Natural Inflation and Gravitational Waves,” JCAP 03 (2024), 018 doi:10.1088/1475-7516/2024/03/018 [arXiv:2311.00741].
  10. R. Hojman, C. Mukku and W. A. Sayed, “Parity violation in metric torsion theories of gravitation,” Phys. Rev. D 22 (1980), 1915-1921 doi:10.1103/PhysRevD.22.1915
  11. P. C. Nelson, “Gravity With Propagating Pseudoscalar Torsion,” Phys. Lett. A 79 (1980), 285 doi:10.1016/0375-9601(80)90348-5
  12. S. Holst, “Barbero’s Hamiltonian derived from a generalized Hilbert-Palatini action,” Phys. Rev. D 53 (1996), 5966-5969 doi:10.1103/PhysRevD.53.5966 [arXiv:gr-qc/9511026].
  13. L. Järv, A. Racioppi and T. Tenkanen, “Palatini side of inflationary attractors,” Phys. Rev. D 97 (2018) no.8, 083513 doi:10.1103/PhysRevD.97.083513 [arXiv:1712.08471].
  14. L. Järv, A. Karam, A. Kozak, A. Lykkas, A. Racioppi and M. Saal, “Equivalence of inflationary models between the metric and Palatini formulation of scalar-tensor theories,” Phys. Rev. D 102 (2020) no.4, 044029 doi:10.1103/PhysRevD.102.044029 [arXiv:2005.14571].
  15. I. D. Gialamas, A. Karam, T. D. Pappas and E. Tomberg, “Implications of Palatini gravity for inflation and beyond,” Int. J. Geom. Meth. Mod. Phys. 20 (2023) no.13, 2330007 doi:10.1142/S0219887823300076 [arXiv:2303.14148].
  16. W. Barker and C. Marzo, “Particle spectra of general Ricci-type Palatini or metric-affine theories,” [arXiv:2402.07641].
  17. R. D. Hecht, J. M. Nester and V. V. Zhytnikov, “Some Poincare gauge theory Lagrangians with well posed initial value problems,” Phys. Lett. A 222 (1996), 37-42 doi:10.1016/0375-9601(96)00622-6
  18. J. Beltrán Jiménez and F. J. Maldonado Torralba, “Revisiting the stability of quadratic Poincaré gauge gravity,” Eur. Phys. J. C 80 (2020) no.7, 611 doi:10.1140/epjc/s10052-020-8163-8 [arXiv:1910.07506].
  19. G. Pradisi and A. Salvio, “(In)equivalence of metric-affine and metric effective field theories,” Eur. Phys. J. C 82 (2022) no.9, 840 doi:10.1140/epjc/s10052-022-10825-9 [arXiv:2206.15041].
  20. A. Salvio, “Inflating and reheating the Universe with an independent affine connection,” Phys. Rev. D 106 (2022) no.10, 103510 doi:10.1103/PhysRevD.106.103510 [arXiv:2207.08830]. A. Salvio, “Inflation and Reheating through an Independent Affine Connection,” [arXiv:2311.02902].
  21. A. Di Marco, E. Orazi and G. Pradisi, “Einstein–Cartan pseudoscalaron inflation,” Eur. Phys. J. C 84 (2024) no.2, 146 doi:10.1140/epjc/s10052-024-12482-6 [arXiv:2309.11345].
  22. A. Achúcarro, V. Atal and Y. Welling, “On the viability of m2⁢ϕ2superscript𝑚2superscriptitalic-ϕ2m^{2}\phi^{2}italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and natural inflation,” JCAP 07 (2015), 008 doi:10.1088/1475-7516/2015/07/008 [arXiv:1503.07486].
  23. R. Z. Ferreira, A. Notari and G. Simeon, “Natural Inflation with a periodic non-minimal coupling,” JCAP 11 (2018), 021 doi:10.1088/1475-7516/2018/11/021 [arXiv:1806.05511].
  24. I. Antoniadis, A. Karam, A. Lykkas, T. Pappas and K. Tamvakis, “Rescuing Quartic and Natural Inflation in the Palatini Formalism,” JCAP 03 (2019), 005 doi:10.1088/1475-7516/2019/03/005 [arXiv:1812.00847].
  25. G. Simeon, “Scalar-tensor extension of Natural Inflation,” JCAP 07 (2020), 028 doi:10.1088/1475-7516/2020/07/028 [arXiv:2002.07625].
  26. A. Salvio, “BICEP/Keck data and quadratic gravity,” JCAP 09 (2022), 027 doi:10.1088/1475-7516/2022/09/027 [arXiv:2202.00684].
  27. G. K. Karananas, M. Shaposhnikov, A. Shkerin and S. Zell, “Matter matters in Einstein-Cartan gravity,” Phys. Rev. D 104 (2021) no.6, 064036 doi:10.1103/PhysRevD.104.064036 [arXiv:2106.1381].
  28. G. Immirzi, “Real and complex connections for canonical gravity,” Class. Quant. Grav. 14 (1997), L177-L181 doi:10.1088/0264-9381/14/10/002 [arXiv:gr-qc/9612030].
  29. G. Immirzi, “Quantum gravity and Regge calculus,” Nucl. Phys. B Proc. Suppl. 57 (1997), 65-72 doi:10.1016/S0920-5632(97)00354-X [arXiv:gr-qc/9701052].
  30. S. Weinberg “The quantum theory of fields. Vol. 2: Modern applications”. Cambridge University Press 1996.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.