Density of group languages in shift spaces (2403.17892v2)
Abstract: The density of a rational language can be understood as the frequency of some "pattern" in the shift space, for example a pattern like "words with an even number of a given letter." We study the density of group languages, i.e. rational languages recognized by morphisms onto finite groups, inside shift spaces. We show that the density with respect to any given ergodic measure on a shift space exists for every group language, because it can be computed by using any ergodic lift of the given measure to some skew product between the shift space and the recognizing group. We then further study densities in shifts of finite type (with a suitable notion of irreducibility), and then in minimal shifts. In the latter case, we obtain a closed formula for the density under the condition that the skew product has minimal closed invariant subsets which are ergodic under the product of the original measure and the uniform probability measure on the group. The formula is derived in part from a characterization of minimal closed invariant subsets for skew products relying on notions of cocycles and coboundaries. In the case where the whole skew product is ergodic under the product measure, then the density is just the cardinality of the subset of the group which defines the language divided by the cardinality of the group. Moreover, we provide sufficient conditions for the skew product to have minimal closed invariant subsets that are ergodic under the product measure. Finally, we investigate the link between minimal closed invariant subsets, return words and bifix codes.
- J. Almeida and A. Costa. Presentations of Schützenberger groups of minimal subshifts. Israel J. Math., 196(1):1–31, 2013. doi:10.1007/s11856-012-0139-4.
- H. Anzai. Ergodic skew product transformations on the torus. Osaka Math. J., 3:83–99, 1951. doi:10.18910/11966.
- L. Baggett and K. Merrill. Representations of the Mautner group and cocycles of an irrational rotation. Michigan Math. J., 33(2), 1986. doi:10.1307/mmj/1029003351.
- Cohomology of polynomials under an irrational rotation. Proc. Amer. Math. Soc., 126(10):2909–2918, 1998. doi:10.1090/s0002-9939-98-04424-4.
- Aperiodic pseudorandom number generators based on infinite words. Theoret. Comput. Sci., 647:85–100, 2016. doi:10.1016/j.tcs.2016.07.042.
- J. Berstel. Sur la densité asymptotique de langages formels. In International Colloquium on Automata, Languages and Programming, 1972.
- Codes and Automata. Cambridge University Press, 2009.
- Bifix codes and Sturmian words. J. Algebra, 369:146–202, 2012. doi:10.1016/j.jalgebra.2012.07.013.
- V. Berthé and H. Goulet-Ouellet. On substitutions preserving their return sets. In A. Frid and R. Mercas, editors, Combinatorics on Words, WORDS 2023, volume 13899 of Lecture Notes in Computer Science, 2023. doi:10.1007/978-3-031-33180-0_6.
- Arithmetic distributions of convergents arising from Jacobi–Perron algorithm. Indag. Math., 17(2):169–185, 2006. doi:10.1016/S0019-3577(06)80014-5.
- Bifix codes and interval exchanges. J. Pure Appl. Algebra, 219:2781–2798, 2015a. doi:10.1016/j.jpaa.2014.09.028.
- Maximal bifix decoding. Discrete Math., 338:725–742, 2015b. doi:10.1016/j.disc.2014.12.010.
- Acyclic, connected and tree sets. Monatsh. Math., 176(4):521–550, 2015a. doi:10.1007/s00605-014-0721-4.
- The finite index basis property. J. Pure Appl. Algebra, 219(7):2521–2537, 2015b. doi:10.1016/j.jpaa.2014.09.014.
- B. Borda. Equidistribution of continued fraction convergents in SL(2,ℤm)SL2subscriptℤ𝑚\mathrm{SL}(2,\mathbb{Z}_{m})roman_SL ( 2 , blackboard_Z start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ) with an application to local discrepancy, 2023. URL arxiv.org/abs/2303.08504. Preprint.
- M. Boshernitzan. A unique ergodicity of minimal symbolic flows with linear block growth. J. Anal. Math., 44(1):77–96, 1984. doi:10.1007/bf02790191.
- M. D. Boshernitzan. A condition for unique ergodicity of minimal symbolic flows. Ergod. Theory Dyn. Syst., 12(3):425–428, 1992. doi:10.1017/s0143385700006866.
- A. I. Bufetov. Skew products and ergodic theorems for group actions. J. Math. Sci., 113(4):548–557, 2003. doi:10.1023/a:1021138024468.
- J. Chaika. Skew products over rotations with exotic properties. Geom. Dedicata, 168:369–385, 2014. doi:10.1007/s10711-013-9835-4.
- J. P. Conze. Équirépartition et ergodicité de transformations cylindriques. Publi. Séminaire Math. Info. Renne, (2), 1976.
- Ergodic Theory, volume 245 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, New York, 1982. ISBN 0-387-90580-4. doi:10.1007/978-1-4615-6927-5. Translated from the Russian by A. B. Sosinskiĭ.
- Substitution invariant cutting sequences. J. Théor. Nr. Bordx., 5(1):123–137, 1993.
- F. Durand. Linearly recurrent subshifts have a finite number of non-periodic subshift factors. Ergod. Theory Dyn. Syst., 20:1061–1078, 2000. doi:10.1017/S0143385700000584.
- F. Durand and D. Perrin. Dimension Groups and Dynamical Systems. Cambridge University Press, 2022. doi:10.1017/9781108976039.
- S. Eilenberg. Automata, Languages and Machines, Vol. A. Pure and Applied Mathematics. Academic press, 1974.
- H. Furstenberg. Strict ergodicity and transformation of the torus. Am. J. Math., 83(4):573–601, 1961. doi:10.2307/2372899.
- M. Guenais and F. Parreau. Eigenvalues of transformations arising from irrational rotations and step functions, 2006. URL arxiv.org/abs/math/0605250. Preprint.
- G. Hansel and D. Perrin. Codes and Bernoulli partitions. Math. Syst. Theory, 16(1):133–157, 1983. doi:10.1007/BF01744574.
- H. Jager and P. Liardet. Distributions arithmétiques des dénominateurs de convergents de fractions continues. Indag. Math., 50(2):181–197, 1988. doi:10.1016/S1385-7258(88)80026-X.
- S. Kakutani. Random ergodic theorems and Markoff processes with a stable distribution. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, volume 2, pages 247–262. University of California Press, 1951.
- H. B. Keynes and D. Newton. A “minimal”, non-uniquely ergodic interval exchange transformation. Math. Z., 148(2):101–105, 1976. doi:10.1007/BF01214699.
- M. Lemańczyk and M. K. Mentzen. Topological ergodicity of real cocycles over minimal rotations. Monatsh. Math., 134:227–246, 2002. doi:10.1007/s605-002-8259-6.
- D. Lind and B. Marcus. An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge, 1995. ISBN 0-521-55124-2; 0-521-55900-6. doi:10.1017/CBO9780511626302.
- Strict irreducibility of Markov chains and ergodicity of skew products, 2022. URL arxiv.org/abs/2205.09847v3. Preprint.
- Combinatorial Group Theory. Springer Berlin Heidelberg, 2001. doi:10.1007/978-3-642-61896-3.
- P. Michel. Stricte ergodicité d’ensembles minimaux de substitution. C. R. Acad. Sci. Paris, 278:811–813, 1974.
- R. Moeckel. Geodesics on modular surfaces and continued fractions. Ergod. Theory Dyn. Syst., 2(1):69–83, 1982. doi:10.1017/s0143385700009585.
- B. Mossé. Puissance de mots et reconnaissabilité des points fixes d’une substitution. Theoret. Comput. Sci., 99(2):327–334, 1992. doi:10.1016/0304-3975(92)90357-L.
- D. Perrin and A. Restivo. A note on Sturmian words. Theoret. Comput. Sci., 429:265–272, 2012. doi:10.1016/j.tcs.2011.12.047.
- K. Petersen. Ergodic Theory. Cambridge University Press, 1983. doi:10.1017/cbo9780511608728.
- K. E. Petersen. Extension of minimal transformation groups. Math. Syst. Theory, 5(4):365–375, 1971. doi:10.1007/BF01694081.
- M. Queffélec. Substitution Dynamical Systems: Spectral Analysis. Springer Berlin Heidelberg, 2010. doi:10.1007/978-3-642-11212-6.
- A. Ramsay. Nontransitive quasi-orbits in Mackey’s analysis of group extensions. Acta Math., 137(0):17–48, 1976. doi:10.1007/bf02392411.
- K. Schmidt. Cocycles on Ergodic Transformation Groups. McMillan, 1977.
- M. P. Schützenberger. Sur certains sous-monoïdes libres. Bull. Soc. Math. Fr., 93:209–223, 1965. doi:10.24033/bsmf.1623.
- M. Stewart. Irregularities of uniform distribution. Acta Math., 37(1-3):185–221, 1981. doi:10.1007/BF01904883.
- P. Szüsz. Über die metrische Theorie der diophantischen Approximation. II. Acta Math., 8:225–241, 1962/63. doi:10.4064/aa-8-2-225-241.
- W. A. Veech. Strict ergodicity in zero dimensional dynamical systems and the Kronecker–Weyl theorem mod 2. Trans. Amer. Math. Soc., 140:1, 1969. doi:10.2307/1995120.
- W. A. Veech. Finite group extensions of irrational rotations. Israel J. Math., 21(2):240–259, 1975. doi:10.1007/BF02760801.
- S.-I. Yasutomi. On Sturmian sequences which are invariant under some substitutions. In Number Theory and its Applications, Kyoto 1997, volume 2 of Developments in Mathematics, pages 347–373. Springer New York, 1999. ISBN 0-7923-5952-6.
- R. J. Zimmer. Extensions of ergodic group actions. Illinois J. Math., 20:373–409, 1976. doi:10.1215/ijm/1256049780.