Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Steering Feedback in Dynamic Driving Simulators: The Influence of Steering Wheel Vibration and Vehicle Motion Frequency (2403.17800v1)

Published 26 Mar 2024 in eess.SY and cs.SY

Abstract: The validity of the subjective evaluation of steering feedback in driving simulators is crucial for modern vehicle development. Although there are established objective steering characteristics for the assessment of both stationary and dynamic feedback behaviour, factors such as steering wheel vibrations and vehicle body motion, particularly in high-frequency ranges, present challenges in simulator fidelity. This work investigates the influence of steering wheel vibration and vehicle body motion frequency content on the subjective evaluation of steering feedback during closed-loop driving in a dynamic driving simulator. A controlled subject study with 30 participants consisting of a back-to-back comparison of a reference vehicle with an electrical power steering system and three variants of its virtual representation on a dynamic driving simulator was performed. Subjective evaluation focused on the representation of road feedback in comparison to the reference vehicle. The statistical analysis of subjective results show that there is a significant influence of the frequency content of both steering wheel torque and vehicle motion on the subjective evaluation of steering feedback in a dynamic driving simulator. The results suggest an influence of frequency content on the subjective evaluation quality of steering feedback characteristics that are not associated with the dynamic feedback behaviour in the context of established performance indicators.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (85)
  1. M. Rothhämel, J. IJkema, and L. Drugge, “A method to find correlations between steering feel and vehicle handling properties using a moving base driving simulator,” Vehicle system dynamics, vol. 49, no. 12, pp. 1837–1854, 2011.
  2. G. L. G. Gómez, M. Nybacka, E. Bakker, and L. Drugge, “Findings from subjective evaluations and driver ratings of vehicle dynamics: steering and handling,” Vehicle System Dynamics, vol. 53, no. 10, pp. 1416–1438, 2015.
  3. A. Bootz, S. Gruber, J. Holtschulze, H. Kroiss, K. Kunze, R. Müller, A. Pauly, J. Remfrey, H. Rieger, E. Sagan et al., “Fahrwerk,” in Vieweg Handbuch Kraftfahrzeugtechnik.   Springer, 2016, pp. 735–924.
  4. A. Uselmann, “Ein beitrag zur funktionalen entwicklung eines elektromechanischen lenksystems für sportlich orientierte fahrzeuge,” Ph.D. dissertation, Universität Duisburg-Essen, 2017.
  5. C. Nippold, F. Küçükay, and R. Henze, “Analysis and application of steering systems on a steering test bench,” Automotive and Engine Technology, vol. 1, no. 1, pp. 3–13, 2016.
  6. S. Grüner, T. Werner, and B. Käpernick, “Objectification of steering feel and application in the context of virtual steering feel tuning,” in 8th International Munich chassis symposium 2017.   Springer, 2017, pp. 289–307.
  7. D. Düsterloh, S. Karl, B. Schrage, and K. M. Krüger, “Absicherung der softwarefunktionen von elektromechanischen lenksystemen,” ATZelektronik, vol. 13, no. 1, pp. 62–69, 2018.
  8. E. Ketzmerick, P. Zösch, H. Abel, T. Enning, C. Schimmel, and G. Prokop, “A validated set of objective steering feel parameters focusing on non-redundancy and robustness,” in 22. Internationales Stuttgarter Symposium, M. Bargende, H.-C. Reuss, and A. Wagner, Eds.   Wiesbaden: Springer Fachmedien Wiesbaden, 2022, pp. 443–466.
  9. A. Haas, B. Schrage, G. Menze, P. M. Sieberg, and D. Schramm, “Improvements on the dynamical behavior of a hil-steering system test bench,” Actuators, vol. 12, no. 5, p. 186, 2023.
  10. G. P. Bertollini and R. M. Hogan, “Applying driving simulation to quantify steering effort preference as a function of vehicle speed,” SAE Technical Paper, Tech. Rep., 1999.
  11. C. Zong, H. H. Na, D. Hu, D. Wang, and B. Yue, “Study on steering effort preference of drivers based on driving simulator,” SAE Technical Paper, Tech. Rep., 2007.
  12. A. Honisch, M. Lugert, T. Schöning, and S. Hakuli, “Verbesserung des lenkgefühls virtueller ansatz mit hil,” ATZ Automobiltechnische Zeitschrift, vol. 117, no. 6, pp. 26–31, 2015.
  13. A. Liu and S. Chang, “Force feedback in a stationary driving simulator,” in 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century, vol. 2.   IEEE, 1995, pp. 1711–1716.
  14. R. R. Mourant and P. Sadhu, “Evaluation of force feedback steering in a fixed based driving simulator,” in Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 46, no. 26.   SAGE Publications Sage CA: Los Angeles, CA, 2002, pp. 2202–2205.
  15. D. Toffin, G. Reymond, A. Kemeny, and J. Droulez, “Influence of steering wheel torque feedback in a dynamic driving simulator,” in Conference proceedings-Driving Simulation Conference North America, 2003.
  16. D. Toffin, G. Reymond, A. Kemeny, and J. Droulez, “Role of steering wheel feedback on driver performance: driving simulator and modeling analysis,” Vehicle System Dynamics, vol. 45, no. 4, pp. 375–388, 2007.
  17. B. Shyrokau, O. Stroosma, C. Dijksterhuis, J. Loof, M. M. Van Paassen, and R. Happee, “The influence of motion and steering-system model complexity on truck steering,” in Proceedings of the Driving Simulation Conference, 2016, pp. 187–194.
  18. M. K. Salaani, G. Heydinger, and P. Grygier, “Modeling and implementation of steering system feedback for the national advanced driving simulator,” SAE Transactions, vol. 111, pp. 1767–1775, 2002.
  19. E. Iyasere, J. Black, M. Kinstle, B. Post, J. Wagner, and D. Dawson, “A real time re-configurable steering simulator for system design studies,” in 2007 American Control Conference.   IEEE, 2007, pp. 2289–2295.
  20. D. I. Katzourakis, D. A. Abbink, R. Happee, and E. Holweg, “Steering force feedback for human–machine-interface automotive experiments,” IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 1, pp. 32–43, 2011.
  21. G. Baumann, “Evaluation of steering feel and vehicle handling in the stuttgart driving simulator (bewertung von lenkgefühl und fahrverhalten im stuttgarter fahrsimulator),” in 5th International Munich Chassis Symposium 2014, P. E. Pfeffer, Ed.   Wiesbaden: Springer Fachmedien Wiesbaden, 2014, pp. 201–215.
  22. G. L. G. Gómez, C. A. Eurenius, J. D. Cortiñas, E. Bakker, M. Nybacka, L. Drugge, and B. Jacobson, “Validation of a moving base driving simulator for subjective assessments of steering feel and handling,” in Advanced Vehicle Control AVEC’16.   CRC Press, 2016, pp. 429–436.
  23. H. Wolf, “Ergonomische untersuchung des lenkgefühls an personenkraftwagen,” Ph.D. dissertation, Technische Universität München, 2009.
  24. T. Barthenheier, “Potenzial einer fahrertyp-und fahrsituationsabhängigen lenkradmomentgestaltung,” Ph.D. dissertation, Technische Universität Darmstadt, 2007.
  25. D. A. Gordon, “Experimental isolation of the driver’s visual input,” Human Factors, vol. 8, no. 2, pp. 129–138, 1966.
  26. E. Fiala, “Die wechselwirkung zwischen fahrzeug und fahrer,” ATZ Automobiltechnische Zeitschrift, no. 69, pp. 345–348, 1967.
  27. D. Odenthal, T. Bünte, H.-D. Heitzer, and C. Eicker, “Übertragung des lenkgefühls einer servo-lenkung auf steer-by-wire (steer-by-wire control design for achievement of power steering like performance),” at - Automatisierungstechnik, vol. 51, no. 7, pp. 329–337, 2003.
  28. S. Samiee, A. Nahvi, S. Azadi, R. Kazemi, A. R. Hatamian Haghighi, and M. R. Ashouri, “The effect of torque feedback exerted to driver’s hands on vehicle handling–a hardware-in-the-loop approach,” Systems Science & Control Engineering, vol. 3, no. 1, pp. 129–141, 2015.
  29. N. Kim and D. J. Cole, “A model of driver steering control incorporating the driver’s sensing of steering torque,” Vehicle System Dynamics, vol. 49, no. 10, pp. 1575–1596, 2011.
  30. M. Decker, “Zur beurteilung der querdynamik von personenkraftwagen,” Ph.D. dissertation, Technische Universität München, 2009.
  31. U. B. Mandhata, M. J. Jensen, J. R. Wagner, F. S. Switzer, D. M. Dawson, and J. D. Summers, “Evaluation of a customizable haptic feedback system for ground vehicle steer-by-wire interfaces,” in 2012 American Control Conference (ACC).   IEEE, 2012, pp. 2781–2787.
  32. M. A. Bellmann, “Perception of whole-body vibrations: From basic experiments to effects of seat and steering-wheel vibrations on the passenger‘s comfort inside vehicles,” phdthesis, Universität Oldenburg, 2002.
  33. M. Harrer, “Characterisation of steering feel,” Ph.D. dissertation, University of Bath, 2007.
  34. A. K. Zschocke, “Ein beitrag zur objektiven und subjektiven evaluierung des lenkkomforts von kraftfahrzeugen,” Ph.D. dissertation, Karlsruher Institut für Technologie, 2009.
  35. T. P. Berber-Solano, “Evaluation of the human cognitive detection of road surfaces based on the feedback vibrations provided by the automobile steering wheel.” Ph.D. dissertation, University of Sheffield, 2009.
  36. D. Düsterloh, A. Uselmann, J. Scherhaufer, C. Bittner, and D. Schramm, “Objectification of the feedback behavior of the suspension and steering system,” in 9th International Munich Chassis Symposium 2018.   Springer, 2019, pp. 505–526.
  37. J. Grau, J. H. Sterthoff, B. Boßdorf-Zimmer, R. Henze, and F. Küçükay, “Steering feedback perception of average drivers,” SAE Technical Paper, Tech. Rep., 2018.
  38. D. Wang and F. Esser, “Epas system tests using rack force models,” SAE Technical Paper, Tech. Rep., 2016.
  39. P. Brunn and M. Harrer, “Objektivierung der lenkungsrückmeldung,” Fortschritt-Berichte VDI. Reihe 12, Verkehrstechnik/Fahrzeugtechnik, no. 580, 2004.
  40. M. Harrer, P. E. Pfeffer, and D. N. Johnston, “Steering feel - objective assessment of passenger cars - analysis of steering feel and vehicle handling,” 2006.
  41. A. K. Zschocke and A. Albers, “Links between subjective and objective evaluations regarding the steering character of automobiles,” International Journal of Automotive Technology, vol. 9, 2008.
  42. M. Münster, M. Lehner, and D. Rixen, “Requirements for the disturbance response of steering and suspension systems based on vehicle targets,” in 14. Internationales Stuttgarter Symposium.   Springer, 2014, pp. 861–878.
  43. D. Lunkeit, “Ein beitrag zur optimierung des rückmelde-und rückstellverhaltens elektromechanischer servolenkungen,” Ph.D. dissertation, Universität Duisburg-Essen, 2014.
  44. S. Fankem and S. Müller, “A new model to compute the desired steering torque for steer-by-wire vehicles and driving simulators,” Vehicle System Dynamics, vol. 52, no. 1, pp. 251–271, 2014.
  45. J. Grau, C. Nippold, B. Bossdorf-Zimmer, R. Henze, and F. Küçükay, “Objective evaluation of steering rack force behaviour and identification of feedback information,” SAE International Journal of Passenger Cars-Mechanical Systems, vol. 9, no. 2016-01-9112, pp. 1297–1304, 2016.
  46. M. A. Bellmann, R. Weber, I. Baumann, P. Hillebrand, and V. Mellert, “Methoden zur verbesserung der objektiven beschreibung subjektiver qualitätsurteile der sitz-und lenkradvibrationen im fahrzeug,” Fortschritte der Akustik-DAGA, pp. 294–295, 2001.
  47. J. Giacomin and Y. J. Woo, “Beyond comfort: information content and perception enhancement,” Department of Mechanical Engineering, The University of Sheffield, Tech. Rep., 2004.
  48. M. Ajovalasit, A. Tajadura-Jiménez, A. Shabani, and J. Giacomin, “Human emotional response to steering wheel vibration in automobiles,” International Journal of Vehicle Noise and Vibration, vol. 9, no. 1-2, pp. 109–128, 2013.
  49. R. Henneberger, F. Schaschko, S. Hecker, S. Sentpali, S. Schubert, and M. Meyer, “Akustische funktionsmehrung elektrischer lenksysteme, teil 1: Experimentelle validierung im fahrzeug,” Jahrestagung für Akustik,(DAGA 2016), Aachen, Germany, 2016.
  50. U. Mandhata, R. Parker, J. Wagner, D. Dawson, and B. Post, “Investigation of operator feedback in human-machine haptic interfaces for steer-by-wire transportation systems,” in ASME International Mechanical Engineering Congress and Exposition, vol. 47063, 2004, pp. 981–990.
  51. J. Plunt, “Strategy for transfer path analysis (tpa) applied to vibro-acoustic systems at medium and high frequencies,” in PROCEEDINGS OF THE INTERNATIONAL SEMINAR ON MODAL ANALYSIS, vol. 2.   KATHOLIEKE UNIVERSITEIT LEUVEN, 1999, pp. 1025–1030.
  52. J. Giacomin, M. S. Shayaa, E. Dormegnie, and L. Richard, “Frequency weighting for the evaluation of steering wheel rotational vibration,” International Journal of Industrial Ergonomics, vol. 33, no. 6, pp. 527–541, 2003.
  53. T. Kaster, H. Kostyra, and T. Treyde, “Acoustics and vibrations on steering and braking systems,” ATZ worldwide, vol. 107, no. 9, pp. 12–14, 2005.
  54. S. Amman, R. Meier, K. Trost, and P. Gu, “Equal annoyance contours for steering wheel hand-arm vibration,” SAE Technical Paper, Tech. Rep., 2005.
  55. M. Ajovalasit and J. Giacomin, “Non-linear dependency of the subjective perceived intensity of steering wheel rotational vibration,” International Journal of Industrial Ergonomics, vol. 39, no. 1, pp. 58–67, 2009.
  56. H. Wang, Z. Man, W. Shen, Z. Cao, J. Zheng, J. Jin et al., “Robust control for steer-by-wire systems with partially known dynamics,” IEEE Transactions on Industrial Informatics, vol. 10, no. 4, pp. 2003–2015, 2014.
  57. A. Parduzi, “Bewertung der validität von fahrsimulatoren anhand vibro-akustischer fahrzeugschwingungen,” Ph.D. dissertation, Technische Universität Berlin, 2021.
  58. J. Giacomin and Y. J. Woo, “A study of the human ability to detect road surface type on the basis of steering wheel vibration feedback,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 219, no. 11, pp. 1259–1270, 2005.
  59. I. Camuffo, G. Caviasso, L. Pascali, M. Pesce, and E. Alviano, “Simulation tools and evaluation criteria for steering wheel feel improvement of an electric power steering system,” SAE Technical Paper, Tech. Rep., 2002.
  60. V. D. Mills and J. R. Wagner, “Behavioural modelling and analysis of hybrid vehicle steering systems,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 217, no. 5, pp. 349–361, 2003.
  61. K. Inaba, “Simulators–designing steering feel dynamics using a real-time steering simulator,” in 7th International Munich Chassis Symposium 2016: chassis. tech plus.   Springer, 2016, pp. 399–409.
  62. C. Certosini, F. Vinattieri, R. Capitani, and C. Annicchiarico, “Development of a real-time steering system model for driving simulators,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of automobile engineering, vol. 233, no. 11, pp. 2701–2713, 2019.
  63. K. T. R. Van Ende, D. Schaare, J. Kaste, F. Küçükay, R. Henze, and F. K. Kallmeyer, “Practicability study on the suitability of artificial, neural networks for the approximation of unknown steering torques,” Vehicle System Dynamics, vol. 54, no. 10, pp. 1362–1383, 2016.
  64. R. Zhao, W. Deng, B. Ren, and J. Ding, “Modeling on steering feedback torque based on data-driven method,” IEEE/ASME Transactions on Mechatronics, vol. 27, no. 5, pp. 2775–2785, 2022.
  65. R. Zhao, W. Deng, Y. Wang, K. Huang, B. Zheng, and J. Ding, “An improved data-driven method for steering feedback torque of driving simulator,” IEEE/ASME Transactions on Mechatronics, vol. 28, no. 5, pp. 2953–2963, 2023.
  66. M. Segawa, S. Nakano, M. Shino, and M. Nagai, “Preliminary study concerning quantitative analysis of steering system using hardware-in-the-loop (hil) simulator,” SAE Technical Paper, Tech. Rep., 2006.
  67. F. Vinattieri, T. Wright, R. Capitani, C. Annicchiarico, and G. Danisi, “Target setting and structural design of an eps-in-the-loop test bench for steering feeling simulation,” SAE Technical Paper, Tech. Rep., 2016.
  68. F. Vinattieri, “Steering feeling characterization by means of a hardware in the loop approach,” Ph.D. dissertation, Universita degli studi Firenze, 2017.
  69. E. M. Talarico, G. Raimondi, F. Alfatti, D. Vitaliti, and C. Annicchiarico, “A virtual development approach using advanced hil steering bench,” in 12th International Munich chassis symposium, 2021.
  70. R. Schimpf, “Charakterisierung von lenksystemen mit hilfe eines lenksystemprüfstands,” Ph.D. dissertation, Technische Universität Wien (Austria), 2016.
  71. J.-H. Kim and J.-B. Song, “Control logic for an electric power steering system using assist motor,” Mechatronics, vol. 12, no. 3, pp. 447–459, 2002.
  72. M. H. Lee, H. M. Lee, K. S. Lee, S. K. Ha, J. I. Bae, J. H. Park, H. G. Park, H. J. Choi, and H. H. Chun, “Development of a hardware in the loop simulation system for electric power steering in vehicles,” International journal of Automotive technology, vol. 12, pp. 733–744, 2011.
  73. S. Lee and E. H. Roh, “Research on the rig tests for evaluation of steering response of electric power steering (eps) sub-system,” SAE Technical Paper, Tech. Rep., 2012.
  74. B. Shyrokau, J. Loof, O. Stroosma, M. Wang, and R. Happee, “Effect of steering model fidelity on subjective evaluation of truck steering feel,” in DSC 2015 Europe, Sep. 2015, p. 39, 14th Driving Simulation Conference; Exhibition (DSC 2015), September 16-18, 2015, Tübingen, Germany, DSC 2015 ; Conference date: 16-09-2015 Through 18-09-2015. [Online]. Available: http://dsc2015.tuebingen.mpg.de/Conference.html
  75. B. Shyrokau, J. De Winter, O. Stroosma, C. Dijksterhuis, J. Loof, R. van Paassen, and R. Happee, “The effect of steering-system linearity, simulator motion, and truck driving experience on steering of an articulated tractor-semitrailer combination,” Applied Ergonomics, vol. 71, pp. 17–28, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0003687018300796
  76. F. Faul, E. Erdfelder, A.-G. Lang, and A. Buchner, “G* power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences,” Behavior research methods, vol. 39, no. 2, pp. 175–191, 2007.
  77. A. Riedel and R. Arbinger, “Subjektive und objektive beurteilung des fahrverhaltens von pkw,” FAT-Schriftenreihe, no. 139, 1997.
  78. H.-P. Krüger, A. Neukum, and J. Schuller, “Bewertung von fahrzeugeigenschaften–vom fahrgefühl zum fahrergefühl,” VDI-Fortschritt-Berichte Reihe 22. Bewertung von Mensch-Maschine-Systemen—3. Berliner Werkstatt Mensch-Maschine-Systeme, 1999.
  79. Ab dynamics - vehicle dynamics simulator (vds) development. https://www.abdynamics.com/resources/files/SP6115-i2-aVDS.pdf.
  80. D. C. Chen and D. A. Crolla, “Subjective and objective measures of vehicle handling: drivers & experiments,” Vehicle System Dynamics, vol. 29, no. S1, pp. 576–597, 1998.
  81. S. Data and F. Frigerio, “Objective evaluation of handling quality,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 216, no. 4, pp. 297–305, 2002.
  82. A. Neukum, J. Paulig, L. Frömmig, and R. Henze, “Untersuchung zur wahrnehmung von lenkmomenten bei pkw,” FAT-Schriftenreihe, no. 222, 2010.
  83. M. Fischer, L. Eriksson, and K. Oeltze, “Evaluation of methods for measuring speed perception in a driving simulator,” in Driving Simulation Conference, 2012, p. 16.
  84. H. H. van Huysduynen, J. Terken, and B. Eggen, “The relation between self-reported driving style and driving behaviour. a simulator study,” Transportation Research Part F: Traffic Psychology and Behaviour, vol. 56, pp. 245–255, 2018.
  85. H. Bellem, B. Thiel, M. Schrauf, and J. F. Krems, “Comfort in automated driving: An analysis of preferences for different automated driving styles and their dependence on personality traits,” Transportation Research Part F: Traffic Psychology and Behaviour, vol. 55, pp. 90–100, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1369847817301535

Summary

We haven't generated a summary for this paper yet.