Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
89 tokens/sec
Gemini 2.5 Pro Premium
41 tokens/sec
GPT-5 Medium
23 tokens/sec
GPT-5 High Premium
19 tokens/sec
GPT-4o
96 tokens/sec
DeepSeek R1 via Azure Premium
88 tokens/sec
GPT OSS 120B via Groq Premium
467 tokens/sec
Kimi K2 via Groq Premium
197 tokens/sec
2000 character limit reached

Channel-Adaptive Pilot Design for FDD-MIMO Systems Utilizing Gaussian Mixture Models (2403.17577v1)

Published 26 Mar 2024 in eess.SP

Abstract: In this work, we propose to utilize Gaussian mixture models (GMMs) to design pilots for downlink (DL) channel estimation in frequency division duplex (FDD) systems. The GMM captures prior information during training that is leveraged to design a codebook of pilot matrices in an initial offline phase. Once shared with the mobile terminal (MT), the GMM is utilized to determine a feedback index at the MT in the online phase. This index selects a pilot matrix from a codebook, eliminating the need for online pilot optimization. The GMM is further used for DL channel estimation at the MT via observation-dependent linear minimum mean square error (LMMSE) filters, parametrized by the GMM. The analytic representation of the GMM allows adaptation to any signal-to-noise ratio (SNR) level and pilot configuration without re-training. With extensive simulations, we demonstrate the superior performance of the proposed GMM-based pilot scheme compared to state-of-the-art approaches.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. E. Björnson, L. Sanguinetti, H. Wymeersch, J. Hoydis, and T. L. Marzetta, “Massive MIMO is a reality–What is next? five promising research directions for antenna arrays,” Digit. Signal Process., vol. 94, pp. 3 – 20, 2019, Special Issue on Source Localization in Massive MIMO.
  2. E. Björnson, E. G. Larsson, and T. L. Marzetta, “Massive MIMO: ten myths and one critical question,” IEEE Commun. Mag., vol. 54, no. 2, pp. 114–123, 2016.
  3. J. Choi, D. J. Love, and P. Bidigare, “Downlink training techniques for FDD massive MIMO systems: Open-loop and closed-loop training with memory,” IEEE J. Sel. Areas Commun., vol. 8, no. 5, pp. 802–814, 2014.
  4. J. Kotecha and A. Sayeed, “Transmit signal design for optimal estimation of correlated MIMO channels,” IEEE Trans. Signal Process., vol. 52, no. 2, pp. 546–557, 2004.
  5. E. Björnson and B. Ottersten, “A framework for training-based estimation in arbitrarily correlated Rician MIMO channels with Rician disturbance,” IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1807–1820, 2010.
  6. J. Pang, J. Li, L. Zhao, and Z. Lu, “Optimal training sequences for MIMO channel estimation with spatial correlation,” in IEEE 66th Veh. Technol. Conf., 2007, pp. 651–655.
  7. J. Fang, X. Li, H. Li, and F. Gao, “Low-rank covariance-assisted downlink training and channel estimation for FDD massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 1935–1947, 2017.
  8. Y. Gu and Y. D. Zhang, “Information-theoretic pilot design for downlink channel estimation in FDD massive MIMO systems,” IEEE Trans. Signal Process., vol. 67, no. 9, pp. 2334–2346, 2019.
  9. D. Neumann, T. Wiese, and W. Utschick, “Learning the MMSE channel estimator,” IEEE Trans. Signal Process., vol. 66, no. 11, pp. 2905–2917, Jun. 2018.
  10. 3GPP, “Spatial channel model for multiple input multiple output (MIMO) simulations,” 3rd Generation Partnership Project (3GPP), Tech. Rep. 25.996 (V16.0.0), Jul. 2020.
  11. J. Kermoal, L. Schumacher, K. Pedersen, P. Mogensen, and F. Frederiksen, “A stochastic MIMO radio channel model with experimental validation,” IEEE J. Sel. Areas Commun., vol. 20, no. 6, pp. 1211–1226, 2002.
  12. M. Koller, B. Fesl, N. Turan, and W. Utschick, “An asymptotically MSE-optimal estimator based on Gaussian mixture models,” IEEE Trans. Signal Process., vol. 70, pp. 4109–4123, 2022.
  13. N. Turan, B. Fesl, M. Koller, M. Joham, and W. Utschick, “A versatile low-complexity feedback scheme for FDD systems via generative modeling,” IEEE Trans. Wireless Commun., early access, Nov. 14, 2023, doi: 10.1109/TWC.2023.3330902.
  14. B. Fesl, N. Turan, B. Böck, and W. Utschick, “Channel estimation for quantized systems based on conditionally Gaussian latent models,” IEEE Trans. Signal Process., early access, Feb. 29, 2024, doi: 10.1109/TSP.2024.3371872.
  15. N. Turan, B. Fesl, and W. Utschick, “Enhanced low-complexity FDD system feedback with variable bit lengths via generative modeling,” in 57th Asilomar Conf. Signals, Syst., Comput., 2023, to be published, arXiv preprint: 2305.03427.
  16. A. Alkhateeb, G. Leus, and R. W. Heath, “Compressed sensing based multi-user millimeter wave systems: How many measurements are needed?” in IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), 2015, pp. 2909–2913.
  17. M. B. Mashhadi and D. Gündüz, “Pruning the pilots: Deep learning-based pilot design and channel estimation for MIMO-OFDM systems,” IEEE Trans. Wireless Commun., vol. 20, no. 10, pp. 6315–6328, 2021.
  18. J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,” J. of Mach. Learn. Res., vol. 13, no. null, p. 281–305, Feb. 2012.
  19. Y. Tsai, L. Zheng, and X. Wang, “Millimeter-wave beamformed full-dimensional MIMO channel estimation based on atomic norm minimization,” IEEE Trans. Commun., vol. 66, no. 12, pp. 6150–6163, 2018.
  20. Z. Jiang, A. F. Molisch, G. Caire, and Z. Niu, “Achievable rates of FDD massive MIMO systems with spatial channel correlation,” IEEE Trans. Wireless Commun., vol. 14, no. 5, pp. 2868–2882, 2015.
  21. S. Bazzi and W. Xu, “Downlink training sequence design for FDD multiuser massive MIMO systems,” IEEE Trans. Signal Process., vol. 65, no. 18, pp. 4732–4744, 2017.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.