A unified framework for coarse grained molecular dynamics of proteins with high-fidelity reconstruction (2403.17513v5)
Abstract: Simulating large proteins using traditional molecular dynamics (MD) is computationally demanding. To address this challenge, we propose a novel tree-structured coarse-grained model that efficiently captures protein dynamics. By leveraging a hierarchical protein representation, our model accurately reconstructs high-resolution protein structures, with sub-angstrom precision achieved for a 168-amino acid protein. We combine this coarse-grained model with a deep learning framework based on stochastic differential equations (SDEs). A neural network is trained to model the drift force, while a RealNVP-based noise generator approximates the stochastic component. This approach enables a significant speedup of over 20,000 times compared to traditional MD, allowing for the generation of microsecond-long trajectories within a few minutes and providing valuable insights into protein behavior. Our method demonstrates high accuracy, achieving sub-angstrom reconstruction for short (25 ns) trajectories and maintaining statistical consistency across multiple independent simulations.
- S. A. Hollingsworth and R. O. Dror, “Molecular Dynamics Simulation for All,” Neuron 99, 1129–1143 (2018).
- M. I. Zimmerman and G. R. Bowman, Methods in Enzymology, 1st ed., Vol. 578 (Elsevier Inc., 2016) pp. 213–225.
- M. Bergdorf, A. Robinson-Mosher, X. Guo, K.-H. Law, D. E. Shaw, and D. E. Shaw, “Desmond/GPU Performance as of April 2021,” 1 (2021).
- D. E. Shaw, P. J. Adams, A. Azaria, J. A. Bank, B. Batson, A. Bell, M. Bergdorf, J. Bhatt, J. Adam Butts, T. Correi, R. M. Dirks, R. O. Dror, M. P. Eastwoo, B. Edwards, A. Even, P. Feldmann, M. Fenn, C. H. Fenton, A. Forte, J. Gagliardo, G. Gill, M. Gorlatova, B. Greskamp, J. P. Grossman, J. Gullingsrud, A. Harper, W. Hasenplaugh, M. Heily, B. C. Heshmat, J. Hunt, D. J. Ierardi, L. Iserovich, B. L. Jackson, N. P. Johnson, M. M. Kirk, J. L. Klepeis, J. S. Kuskin, K. M. Mackenzie, R. J. Mader, R. McGowen, A. McLaughlin, M. A. Moraes, M. H. Nasr, L. J. Nociolo, L. O’Donnell, A. Parker, J. L. Peticolas, G. Pocina, C. Predescu, T. Quan, J. K. Salmon, C. Schwink, K. S. Shim, N. Siddique, J. Spengler, T. Szalay, R. Tabladillo, R. Tartler, A. G. Taube, M. Theobald, B. Towles, W. Vick, S. C. Wang, M. Wazlowski, M. J. Weingarten, J. M. Williams, and K. A. Yuh, “Anton 3: Twenty Microseconds of Molecular Dynamics Simulation before Lunch,” International Conference for High Performance Computing, Networking, Storage and Analysis, SC , 1–11 (2021).
- R. C. Bernardi, M. C. Melo, and K. Schulten, “Enhanced sampling techniques in molecular dynamics simulations of biological systems,” Biochimica et Biophysica Acta - General Subjects 1850, 872–877 (2015).
- W. G. Noid, “Perspective: Coarse-grained models for biomolecular systems,” Journal of Chemical Physics 139 (2013), 10.1063/1.4818908.
- A. Liwo, C. Czaplewski, J. Pillardy, and H. A. Scheraga, “Cumulant-based expressions for the multibody terms for the correlation between local and electrostatic interactions in the united-residue force field,” Journal of Chemical Physics 115, 2323–2347 (2001).
- C. Mim, H. Cui, J. A. Gawronski-Salerno, A. Frost, E. Lyman, G. A. Voth, and V. M. Unger, “Structural basis of membrane bending by the N-BAR protein endophilin,” Cell 149, 137–145 (2012).
- J. W. Chu and G. A. Voth, “Allostery of actin filaments: Molecular dynamics simulations and coarse-grained analysis,” Proceedings of the National Academy of Sciences of the United States of America 102, 13111–13116 (2005).
- A. Yu, A. J. Pak, P. He, V. Monje-Galvan, L. Casalino, Z. Gaieb, A. C. Dommer, R. E. Amaro, and G. A. Voth, “A multiscale coarse-grained model of the SARS-CoV-2 virion,” Biophysical Journal 120, 1097–1104 (2021).
- G. Tóth, “Effective potentials from complex simulations: a potential-matching algorithm and remarks on coarse-grained potentials,” Journal of Physics: Condensed Matter 19, 335222 (2007).
- W. Li and S. Takada, “Characterizing protein energy landscape by self-learning multiscale simulations: Application to a designed β𝛽\betaitalic_β-hairpin,” Biophysical Journal 99, 3029–3037 (2010).
- J. Wang, S. Olsson, C. Wehmeyer, A. Pérez, N. E. Charron, G. De Fabritiis, F. Noé, and C. Clementi, “Machine Learning of Coarse-Grained Molecular Dynamics Force Fields,” ACS Central Science 5, 755–767 (2019), arXiv:1812.01736 .
- B. E. Husic, N. E. Charron, D. Lemm, J. Wang, A. Pérez, M. Majewski, A. Krämer, Y. Chen, S. Olsson, G. De Fabritiis, F. Noé, and C. Clementi, “Coarse graining molecular dynamics with graph neural networks,” Journal of Chemical Physics 153, 1–16 (2020), arXiv:2007.11412 .
- L. Zhang, H. Wang, and E. Weinan, “Reinforced dynamics for enhanced sampling in large atomic and molecular systems,” Journal of Chemical Physics 148 (2018), 10.1063/1.5019675, arXiv:1712.03461 .
- D. Wang, Y. Wang, J. Chang, L. Zhang, H. Wang, and W. E, “Efficient sampling of high-dimensional free energy landscapes using adaptive reinforced dynamics,” Nature Computational Science 2, 20–29 (2022), arXiv:2104.01620 .
- G. Xu, Q. Wang, and J. Ma, “OPUS-Rota4: a gradient-based protein side-chain modeling framework assisted by deep learning-based predictors,” Briefings in Bioinformatics 23, 1–10 (2022).
- G. Xu, Z. Luo, R. Zhou, Q. Wang, and J. Ma, “OPUS-Fold3: a gradient-based protein all-atom folding and docking framework on TensorFlow,” Briefings in Bioinformatics 24, 1–8 (2023).
- J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko, A. Bridgland, C. Meyer, S. A. Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, and D. Hassabis, “Highly accurate protein structure prediction with AlphaFold,” Nature 596, 583–589 (2021).
- J. Köhler, Y. Chen, A. Krämer, C. Clementi, and F. Noé, “Flow-Matching: Efficient Coarse-Graining of Molecular Dynamics without Forces,” Journal of Chemical Theory and Computation 19, 942–952 (2023), arXiv:2203.11167 .
- J. Parsons, J. B. Holmes, J. M. Rojas, J. Tsai, and C. E. M. Strauss, “Practical Conversion from Torsion Space to Cartesian Space for In Silico Protein Synthesis,” Wiley InterScience 0211458 (2005), 10.1002/jcc.20237.
- J. Zhu, “Theoretical investigation of the Freeman resonance in the dissociative ionization of H2+,” Physical Review A 103, 013113 (2021).
- J. Zhu and A. Scrinzi, “Electron double-emission spectra for helium atoms in intense 400-nm laser pulses,” Physical Review A 101, 063407 (2020).
- J. Zhu, “Quantum simulation of dissociative ionization of H 2 + in full dimensionality with a time-dependent surface-flux method,” Physical Review A 102, 053109 (2020).
- J. Moult, “A decade of CASP: Progress, bottlenecks and prognosis in protein structure prediction,” Current Opinion in Structural Biology 15, 285–289 (2005).
- J. Moult, J. T. Pedersen, R. Judson, and K. Fidelis, “A large-scale experiment to assess protein structure prediction methods,” Proteins: Structure, Function, and Bioinformatics 23, ii–iv (1995).
- D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. Berendsen, “GROMACS: Fast, flexible, and free,” Journal of Computational Chemistry 26, 1701–1718 (2005).
- E. Lindahl, B. Hess, and D. van der Spoel, “GROMACS 3.0: A package for molecular simulation and trajectory analysis,” Journal of Molecular Modeling 7, 306–317 (2001).
- H. J. Berendsen, D. van der Spoel, and R. van Drunen, “GROMACS: A message-passing parallel molecular dynamics implementation,” Computer Physics Communications 91, 43–56 (1995).
- C. Zhang and J. Ma, “Enhanced sampling and applications in protein folding in explicit solvent,” The Journal of Chemical Physics 132, 244101 (2010), arXiv:1003.0464 .
- T. Zang, L. Yu, C. Zhang, and J. Ma, “Parallel continuous simulated tempering and its applications in large-scale molecular simulations,” The Journal of Chemical Physics 141, 044113 (2014).
- T. Zang, T. Ma, Q. Wang, and J. Ma, “Improving low-accuracy protein structures using enhanced sampling techniques,” The Journal of chemical physics 149 (2018), 10.1063/1.5027243.
- T. Ma, T. Zang, Q. Wang, and J. Ma, “Refining protein structures using enhanced sampling techniques with restraints derived from an ensemble-based model,” Protein science : a publication of the Protein Society 27, 1842–1849 (2018).
- M. K. Scherer, B. Trendelkamp-Schroer, F. Paul, G. Pérez-Hernández, M. Hoffmann, N. Plattner, C. Wehmeyer, J. H. Prinz, and F. Noé, “PyEMMA 2: A Software Package for Estimation, Validation, and Analysis of Markov Models,” Journal of Chemical Theory and Computation 11, 5525–5542 (2015).
- Jinzhen Zhu (7 papers)