Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Geometric planted matchings beyond the Gaussian model (2403.17469v1)

Published 26 Mar 2024 in math.ST, cs.DB, cs.DM, math.CO, and stat.TH

Abstract: We consider the problem of recovering an unknown matching between a set of $n$ randomly placed points in $\mathbb{R}d$ and random perturbations of these points. This can be seen as a model for particle tracking and more generally, entity resolution. We use matchings in random geometric graphs to derive minimax lower bounds for this problem that hold under great generality. Using these results we show that for a broad class of distributions, the order of the number of mistakes made by an estimator that minimizes the sum of squared Euclidean distances is minimax optimal when $d$ is fixed and is optimal up to $n{o(1)}$ factors when $d = o(\log n)$. In the high-dimensional regime we consider a setup where both initial positions and perturbations have independent sub-Gaussian coordinates. In this setup we give sufficient conditions under which the same estimator makes no mistakes with high probability. We prove an analogous result for an adapted version of this estimator that incorporates information on the covariance matrix of the perturbations.

Summary

We haven't generated a summary for this paper yet.