Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Test-time Adaptation Meets Image Enhancement: Improving Accuracy via Uncertainty-aware Logit Switching (2403.17423v1)

Published 26 Mar 2024 in cs.CV and stat.ML

Abstract: Deep neural networks have achieved remarkable success in a variety of computer vision applications. However, there is a problem of degrading accuracy when the data distribution shifts between training and testing. As a solution of this problem, Test-time Adaptation~(TTA) has been well studied because of its practicality. Although TTA methods increase accuracy under distribution shift by updating the model at test time, using high-uncertainty predictions is known to degrade accuracy. Since the input image is the root of the distribution shift, we incorporate a new perspective on enhancing the input image into TTA methods to reduce the prediction's uncertainty. We hypothesize that enhancing the input image reduces prediction's uncertainty and increase the accuracy of TTA methods. On the basis of our hypothesis, we propose a novel method: Test-time Enhancer and Classifier Adaptation~(TECA). In TECA, the classification model is combined with the image enhancement model that transforms input images into recognition-friendly ones, and these models are updated by existing TTA methods. Furthermore, we found that the prediction from the enhanced image does not always have lower uncertainty than the prediction from the original image. Thus, we propose logit switching, which compares the uncertainty measure of these predictions and outputs the lower one. In our experiments, we evaluate TECA with various TTA methods and show that TECA reduces prediction's uncertainty and increases accuracy of TTA methods despite having no hyperparameters and little parameter overhead.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. S. Diamond, V. Sitzmann, F. Julca-Aguilar, S. Boyd, G. Wetzstein, and F. Heide, “Dirty pixels: Towards end-to-end image processing and perception,” ACM Transactions on Graphics (TOG), 2021.
  2. D. Hendrycks and T. Dietterich, “Benchmarking neural network robustness to common corruptions and perturbations,” in International Conference on Learning Representations (ICLR), 2019.
  3. O. Zendel, K. Honauer, M. Murschitz, D. Steininger, and G. F. Dominguez, “Wilddash - creating hazard-aware benchmarks,” in European Conference on Computer Vision (ECCV), 2018.
  4. Q. Wang, O. Fink, L. Van Gool, and D. Dai, “Continual test-time domain adaptation,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.
  5. L. Yuan, B. Xie, and S. Li, “Robust test-time adaptation in dynamic scenarios,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023.
  6. L. Jiang and T. Lin, “Test-time robust personalization for federated learning,” in International Conference on Learning Representations (ICLR), 2023.
  7. D. Wang, E. Shelhamer, S. Liu, B. Olshausen, and T. Darrell, “Tent: Fully test-time adaptation by entropy minimization,” in International Conference on Learning Representations (ICLR), 2021.
  8. S. Niu, J. Wu, Y. Zhang, Y. Chen, S. Zheng, P. Zhao, and M. Tan, “Efficient test-time model adaptation without forgetting,” in International Conference on Machine Learning (ICML), 2022.
  9. T. Son, J. Kang, N. Kim, S. Cho, and S. Kwak, “Urie: Universal image enhancement for visual recognition in the wild,” in European Conference on Computer Vision (ECCV), 2020.
  10. Y. Lee, J. Jeon, Y. Ko, B. Jeon, and M. Jeon, “Task-driven deep image enhancement network for autonomous driving in bad weather,” in IEEE International Conference on Robotics and Automation (ICRA), 2021.
  11. D. Liu, B. Wen, X. Liu, Z. Wang, and T. S. Huang, “When image denoising meets high-level vision tasks: A deep learning approach,” in International Joint Conference on Artificial Intelligence (IJCAI), 2018.
  12. Y. Pei, Y. Huang, Q. Zou, X. Zhang, and S. Wang, “Effects of image degradation and degradation removal to cnn-based image classification,” IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2021.
  13. I. Kim, Y. Kim, and S. Kim, “Learning loss for test-time augmentation,” in Advances in Neural Information Processing Systems (NeurIPS), 2020.
  14. H. Talebi and P. Milanfar, “Learning to resize images for computer vision tasks,” in IEEE/CVF International Conference on Computer Vision (ICCV), 2021.
  15. S. Enomoto, M. R. Busto, and T. Eda, “Dynamic test-time augmentation via differentiable functions,” arXiv preprint arXiv:2212.04681, 2022.
  16. J. Gao, J. Zhang, X. Liu, T. Darrell, E. Shelhamer, and D. Wang, “Back to the source: Diffusion-driven test-time adaptation,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023.
  17. I. Gulrajani and D. Lopez-Paz, “In search of lost domain generalization,” in International Conference on Learning Representations (ICLR), 2020.
  18. M. Zhang, S. Levine, and C. Finn, “Memo: Test time robustness via adaptation and augmentation,” Advances in Neural Information Processing Systems (NeurIPS), 2022.
  19. P. T. Sivaprasad and F. Fleuret, “Test time adaptation through perturbation robustness,” arXiv preprint arXiv:2110.10232, 2021.
  20. D. Chen, D. Wang, T. Darrell, and S. Ebrahimi, “Contrastive test-time adaptation,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.
  21. D. Brahma and P. Rai, “A probabilistic framework for lifelong test-time adaptation,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023.
  22. S. Goyal, M. Sun, A. Raghunathan, and J. Z. Kolter, “Test time adaptation via conjugate pseudo-labels,” in Advances in Neural Information Processing Systems (NeurIPS), 2022.
  23. A. Bartler, A. Bühler, F. Wiewel, M. Döbler, and B. Yang, “Mt3: Meta test-time training for self-supervised test-time adaption,” in International Conference on Artificial Intelligence and Statistics (AISTATS), 2022.
  24. A. Bartler, F. Bender, F. Wiewel, and B. Yang, “Ttaps: Test-time adaption by aligning prototypes using self-supervision,” in International Joint Conference on Neural Networks (IJCNN), 2022.
  25. T. Kojima, Y. Matsuo, and Y. Iwasawa, “Robustifying vision transformer without retraining from scratch by test-time class-conditional feature alignment,” in International Joint Conference on Artificial Intelligence (IJCAI), 2022.
  26. S. Jung, J. Lee, N. Kim, A. Shaban, B. Boots, and J. Choo, “Cafa: Class-aware feature alignment for test-time adaptation,” in IEEE/CVF International Conference on Computer Vision (ICCV), 2023.
  27. K. Adachi, S. Yamaguchi, and A. Kumagai, “Covariance-aware feature alignment with pre-computed source statistics for test-time adaptation to multiple image corruptions,” in IEEE International Conference on Image Processing (ICIP), 2023.
  28. Y. Iwasawa and Y. Matsuo, “Test-time classifier adjustment module for model-agnostic domain generalization,” Advances in Neural Information Processing Systems (NeurIPS), 2021.
  29. J. S. Song, J. Lee, I.-S. Kweon, and S. Choi, “Ecotta: Memory-efficient continual test-time adaptation via self-distilled regularization,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023.
  30. J. Kim, I. Hwang, and Y. M. Kim, “Ev-tta: Test-time adaptation for event-based object recognition,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.
  31. I. Shin, Y.-H. Tsai, B. Zhuang, S. Schulter, B. Liu, S. Garg, I. S. Kweon, and K.-J. Yoon, “Mm-tta: Multi-modal test-time adaptation for 3d semantic segmentation,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.
  32. A. Gunawan, M. A. Nugroho, and S. J. Park, “Test-time adaptation for real image denoising via meta-transfer learning,” arXiv preprint arXiv:2207.02066, 2022.
  33. S. Ebrahimi, S. O. Arik, and T. Pfister, “Test-time adaptation for visual document understanding,” arXiv preprint arXiv:2206.07240, 2022.
  34. F. Azimi, S. Palacio, F. Raue, J. Hees, L. Bertinetto, and A. Dengel, “Self-supervised test-time adaptation on video data,” in IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2022.
  35. S. Sinha, P. Gehler, F. Locatello, and B. Schiele, “Test: Test-time self-training under distribution shift,” in IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2023.
  36. Y. Zhang, S. Borse, H. Cai, and F. Porikli, “Auxadapt: Stable and efficient test-time adaptation for temporally consistent video semantic segmentation,” in IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2022.
  37. N. Chattopadhyay, S. Gehlot, and N. Singhal, “Fusion: Fully unsupervised test-time stain adaptation via fused normalization statistics,” in Computer Vision–ECCV 2022 Workshops: Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part VII, 2023.
  38. V. Sharma, A. Diba, D. Neven, M. S. Brown, L. V. Gool, and R. Stiefelhagen, “Classification-driven dynamic image enhancement,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
  39. H. Bahng, A. Jahanian, S. Sankaranarayanan, and P. Isola, “Exploring visual prompts for adapting large-scale models,” arXiv preprint arXiv:2203.17274, 2022.
  40. M. Jia, L. Tang, B.-C. Chen, C. Cardie, S. Belongie, B. Hariharan, and S.-N. Lim, “Visual prompt tuning,” in European Conference on Computer Vision (ECCV), 2022.
  41. Y. Gao, X. Shi, Y. Zhu, H. Wang, Z. Tang, X. Zhou, M. Li, and D. N. Metaxas, “Visual prompt tuning for test-time domain adaptation,” arXiv preprint arXiv:2210.04831, 2022.
  42. Y. Gan, X. Ma, Y. Lou, Y. Bai, R. Zhang, N. Shi, and L. Luo, “Decorate the newcomers: Visual domain prompt for continual test time adaptation,” in Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2023.
  43. Y.-Y. Tsai, C. Mao, and J. Yang, “Convolutional visual prompt for robust visual perception,” Advances in Neural Information Processing Systems (NeurIPS), 2024.
  44. S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations for deep neural networks,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
  45. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in The Medical Image Computing and Computer Assisted Intervention Society (MICCAI), 2015.
  46. J. Mei, Y. Han, Y. Bai, Y. Zhang, Y. Li, X. Li, A. Yuille, and C. Xie, “Fast advprop,” in International Conference on Learning Representations (ICLR), 2022.
  47. S. Schneider, E. Rusak, L. Eck, O. Bringmann, W. Brendel, and M. Bethge, “Improving robustness against common corruptions by covariate shift adaptation,” Advances in Neural Information Processing Systems (NeurIPS), 2020.
  48. H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jegou, “Training data-efficient image transformers & distillation through attention,” in International Conference on Machine Learning (ICML), 2021.
  49. D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer, and B. Lakshminarayanan, “AugMix: A simple data processing method to improve robustness and uncertainty,” in International Conference on Learning Representations (ICLR), 2020.
  50. D. Hendrycks, S. Basart, N. Mu, S. Kadavath, F. Wang, E. Dorundo, R. Desai, T. Zhu, S. Parajuli, M. Guo et al., “The many faces of robustness: A critical analysis of out-of-distribution generalization,” in IEEE/CVF International Conference on Computer Vision (ICCV), 2021.
  51. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” in International Conference on Learning Representations (ICLR), 2020.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Shohei Enomoto (9 papers)
  2. Naoya Hasegawa (4 papers)
  3. Kazuki Adachi (10 papers)
  4. Taku Sasaki (2 papers)
  5. Shin'ya Yamaguchi (24 papers)
  6. Satoshi Suzuki (8 papers)
  7. Takeharu Eda (8 papers)
Citations (1)
X Twitter Logo Streamline Icon: https://streamlinehq.com