Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cache-Enabled Millimetre-Wave Fluid Antenna Systems: Modeling and Performance (2403.17265v1)

Published 25 Mar 2024 in cs.IT, eess.SP, and math.IT

Abstract: This letter investigates the performance of content caching in a heterogeneous cellular network (HetNet) consisting of fluid antenna system (FAS)-equipped mobile users (MUs) and millimeter-wave (mm-wave) single-antenna small base stations (SBSs), distributed according to the independent homogeneous Poisson point processes (HPPP). In particular, it is assumed that the most popular contents are cached in the SBSs to serve the FAS-equipped MUs requests. To assess the system performance, we derive compact expressions for the successful content delivery probability (SCDP) and the content delivery delay (CDD) using the Gauss-Laguerre quadrature technique. Our numerical results show that the performance of cache-enabled mm-wave HetNets can be greatly improved, when the FAS is utilized at the MUs instead of traditional fixed-antenna system deployment.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. I. ERICSSON. (2022) ERICSSON Mobility Report. [Online]. Available: https://www.ericsson.com/en/reports-and-papers/mobility-report
  2. E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The role of proactive caching in 5G wireless networks,” IEEE Commun. Mag., vol. 52, no. 8, pp. 82–89, Aug. 2014.
  3. K.-K. Wong, A. Shojaeifard, K.-F. Tong, and Y. Zhang, “Fluid antenna systems,” IEEE Trans. Wirel. Commun., vol. 20, no. 3, pp. 1950–1962, Mar. 2021.
  4. B. Blaszczyszyn and A. Giovanidis, “Optimal geographic caching in cellular networks,” in Proc. IEEE Inter. Conf. Commun., pp. 3358–3363, 8-12 Jun. 2015, London, United Kingdom.
  5. Y. Wang, X. Tao, X. Zhang, and Y. Gu, “Cooperative caching placement in cache-enabled D2D underlaid cellular network,” IEEE Commun. Lett., vol. 21, no. 5, pp. 1151–1154, May 2017.
  6. Y. Zhu, G. Zheng, L. Wang, K.-K. Wong, and L. Zhao, “Content placement in cache-enabled sub-6 GHz and millimeter-wave multi-antenna dense small cell networks,” IEEE Trans. Wirel. Commun., vol. 17, no. 5, pp. 2843–2856, May 2018.
  7. E. Baştuğ, M. Bennis, M. Kountouris, and M. Debbah, “Cache-enabled small cell networks: Modeling and tradeoffs,” EURASIP J. Wirel. Commun. Netw., no. 41, pp. 1–11, Feb. 2015.
  8. F. Rostami Ghadi and M. R. Javan, “Outage and delay performance of content caching in two-tier cooperative cellular networks,” IET Commun., vol. 13, no. 16, pp. 2492–2499, Oct. 2019.
  9. K.-K. Wong and K.-F. Tong, “Fluid antenna multiple access,” IEEE Trans. Wirel. Commun., vol. 21, no. 7, pp. 4801–4815, Jul. 2022.
  10. M. Khammassi, A. Kammoun, and M.-S. Alouini, “A new analytical approximation of the fluid antenna system channel,” IEEE Trans. Wirel. Commun., vol. 22, no. 12, pp. 8843–8858, Dec. 2023.
  11. C. Skouroumounis and I. Krikidis, “Fluid antenna with linear MMSE channel estimation for large-scale cellular networks,” IEEE Trans. Commun., vol. 71, no. 2, pp. 1112–1125, Feb. 2023.
  12. Z. Zhang, J. Zhu, L. Dai, and R. W. Heath Jr, “Successive Bayesian reconstructor for channel estimation in fluid antenna systems,” arXiv preprint, arXiv:2312.06551v3, Jan. 2024.
  13. L. Tlebaldiyeva, G. Nauryzbayev, S. Arzykulov, A. Eltawil, and T. Tsiftsis, “Enhancing QoS through fluid antenna systems over correlated Nakagami-m𝑚mitalic_m fading channels,” in Proc. IEEE Wireless Commun. Netw. Conf., pp. 78–83, 10-13 Apr. 2022, Austin, TX, USA.
  14. W. K. New, K.-K. Wong, H. Xu, K.-F. Tong, and C.-B. Chae, “Fluid antenna system: New insights on outage probability and diversity gain,” IEEE Trans. Wireless Commun., vol. 23, no. 1, pp. 128–140, Jan. 2024.
  15. F. R. Ghadi, K.-K. Wong, F. J. López-Martínez, and K.-F. Tong, “Copula-based performance analysis for fluid antenna systems under arbitrary fading channels,” IEEE Commun. Lett., vol. 27, no. 11, pp. 3068–3072, Nov. 2023.
  16. J. D. Vega-Sánchez, A. E. López-Ramírez, L. Urquiza-Aguiar, and D. P. M. Osorio, “Novel expressions for the outage probability and diversity gains in fluid antenna system,” IEEE Wirel. Commun. Lett., vol. 13, no. 2, pp. 372–376, Feb. 2024
  17. Y. Chen, S. Li, Y. Hou, and X. Tao, “Energy-efficiency optimization for slow fluid antenna multiple access using mean-field game,” IEEE Wireless Commun. Lett., early access, doi:10.1109/LWC.2023.3341460, 2023.
  18. Y. Zhu, L. Wang, K.-K. Wong, S. Jin, and Z. Zheng, “Wireless power transfer in massive MIMO-aided HetNets with user association,” IEEE Trans. Commun., vol. 64, no. 10, pp. 4181–4195, Oct. 2016.
  19. S. Singh, M. N. Kulkarni, A. Ghosh, and J. G. Andrews, “Tractable model for rate in self-backhauled millimeter wave cellular networks,” IEEE J. Sel. Areas Commun., vol. 33, no. 10, pp. 2196–2211, Oct. 2015.
  20. D. C. Chen, T. Q. Quek, and M. Kountouris, “Backhauling in heterogeneous cellular networks: Modeling and tradeoffs,” IEEE Trans. Wirel. Commun., vol. 14, no. 6, pp. 3194–3206, Jun. 2015.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com