Unified Differentiable Learning of Electric Response (2403.17207v2)
Abstract: Predicting response of materials to external stimuli is a primary objective of computational materials science. However, current methods are limited to small-scale simulations due to the unfavorable scaling of computational costs. Here, we implement an equivariant machine-learning framework where response properties stem from exact differential relationships between a generalized potential function and applied external fields. Focusing on responses to electric fields, the method predicts electric enthalpy, forces, polarization, Born charges, and polarizability within a unified model enforcing the full set of exact physical constraints, symmetries and conservation laws. Through application to $\alpha$-SiO$_2$, we demonstrate that our approach can be used for predicting vibrational and dielectric properties of materials, and for conducting large-scale dynamics under arbitrary electric fields at unprecedented accuracy and scale. We apply our method to ferroelectric BaTiO$_3$ and capture the temperature-dependence and time evolution of hysteresis, revealing the underlying microscopic mechanisms of nucleation and growth that govern ferroelectric domain switching.
- R. Resta, Macroscopic polarization in crystalline dielectrics: the geometric phase approach, Rev. Mod. Phys. 66, 899 (1994).
- R. Resta and D. Vanderbilt, Theory of polarization: a modern approach, in Physics of ferroelectrics: a modern perspective (Springer, 2007).
- R. Resta, Theory of the electric polarization in crystals, Ferroelectrics 136, 51 (1992).
- R. D. King-Smith and D. Vanderbilt, Theory of polarization of crystalline solids, Phys. Rev. B 47, 1651 (1993).
- D. Vanderbilt and R. D. King-Smith, Electric polarization as a bulk quantity and its relation to surface charge, Phys. Rev. B 48, 4442 (1993).
- A. K. Tagantsev, Electric polarization in crystals and its response to thermal and elastic perturbations, Phase Transit. 35, 119 (1991).
- D. Vanderbilt, Berry-phase theory of proper piezoelectric response, J. Phys. Chem. Solids 61, 147 (2000).
- N. A. Spaldin, A beginner’s guide to the modern theory of polarization, J. Solid State Chem. 195, 2 (2012).
- R. W. Nunes and X. Gonze, Berry-phase treatment of the homogeneous electric field perturbation in insulators, Phys. Rev. B 63, 155107 (2001).
- P. Umari and A. Pasquarello, Ab initio molecular dynamics in a finite homogeneous electric field, Phys. Rev. Lett. 89, 157602 (2002).
- J. G. Kirkwood, The dielectric polarization of polar liquids, J. Chem. Phys. 7, 911 (1939).
- H. Fröhlich, Theory of dielectrics: dielectric constant and dielectric loss, Clarendon Press: Oxford (1958).
- R. Kubo, The fluctuation-dissipation theorem, Rep. Progr. Phys. 29, 255 (1966).
- M. Neumann, Dipole moment fluctuation formulas in computer simulations of polar systems, Molecular Physics 50, 841 (1983).
- M. Neumann and O. Steinhauser, On the calculation of the frequency-dependent dielectric constant in computer simulations, Chem. Phys. Lett. 102, 508 (1983).
- M. Neumann, O. Steinhauser, and G. S. Pawley, Consistent calculation of the static and frequency-dependent dielectric constant in computer simulations, Mol. Phys. 52, 97 (1984).
- W. Evans and J. Powles, The computer simulation of the dielectric properties of polar liquids. the dielectric constant and relaxation of liquid hydrogen chloride, Mol. Phys. 45, 695 (1982).
- D. McQuarrie, Statistical Mechanics; University Science books, Sausalito, CA , 222 (2000).
- J. Nigam, M. J. Willatt, and M. Ceriotti, Equivariant representations for molecular Hamiltonians and N-center atomic-scale properties, J. Chem. Phys. 156, 014115 (2022).
- M. Geiger and T. Smidt, e3nn: Euclidean neural networks, (2022), arXiv:2207.09453 [cs.LG] .
- A. S. Christensen, F. A. Faber, and O. A. von Lilienfeld, Operators in quantum machine learning: Response properties in chemical space, J. Chem. Phys. 150, 064105 (2019).
- K. Schütt, O. Unke, and M. Gastegger, Equivariant message passing for the prediction of tensorial properties and molecular spectra, in Int. Conf. Mach. Learn., Vol. 139, edited by M. Meila and T. Zhang (PMLR, 2021) pp. 9377–9388.
- P. Schienbein, Spectroscopy from machine learning by accurately representing the atomic polar tensor, J. Chem. Theory Comput. 19, 705 (2023).
- I. Souza, J. Íñiguez, and D. Vanderbilt, First-principles approach to insulators in finite electric fields, Phys. Rev. Lett. 89, 117602 (2002).
- A. M. F. Neto and S. R. Salinas, The physics of ferroelectrics-a modern perspective (Springer, 2007).
- R. M. Pick, M. H. Cohen, and R. M. Martin, Microscopic theory of force constants in the adiabatic approximation, Phys. Rev. B 1, 910 (1970).
- T. Maxson and T. Szilvasi, Transferable water potentials using equivariant neural networks (2024), arXiv:2402.16204 [physics.chem-ph] .
- S. de Gironcoli, S. Baroni, and R. Resta, Piezoelectric properties of III-V semiconductors from first-principles linear-response theory, Phys. Rev. Lett. 62, 2853 (1989).
- X. Gonze, First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm, Phys. Rev. B 55, 10337 (1997).
- A. Pasquarello and R. Car, Dynamical charge tensors and infrared spectrum of amorphous SiO22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT, Phys. Rev. Lett. 79, 1766 (1997).
- L. Giacomazzi, P. Umari, and A. Pasquarello, Medium-range structure of vitreous SiO22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT obtained through first-principles investigation of vibrational spectra, Phys. Rev. B 79, 064202 (2009).
- S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117, 1 (1995).
- J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996).
- D. P. Kingma and J. Ba, Adam: A method for stochastic optimization (2017), arXiv:1412.6980 [cs.LG] .
- O. Marsalek and T. E. Markland, Quantum dynamics and spectroscopy of ab initio liquid water: The interplay of nuclear and electronic quantum effects, J. Phys. Chem. Lett. 8, 1545 (2017).