2000 character limit reached
Free Sets in Planar Graphs: History and Applications (2403.17090v2)
Published 25 Mar 2024 in cs.CG, cs.DM, and math.CO
Abstract: A subset $S$ of vertices in a planar graph $G$ is a free set if, for every set $P$ of $|S|$ points in the plane, there exists a straight-line crossing-free drawing of $G$ in which vertices of $S$ are mapped to distinct points in $P$. In this survey, we review - several equivalent definitions of free sets, - results on the existence of large free sets in planar graphs and subclasses of planar graphs, - and applications of free sets in graph drawing. The survey concludes with a list of open problems in this still very active research area.
- Graphs with homeomorphically irreducible spanning trees. J. Graph Theory, 14(2):247–258, 1990. doi:10.1002/JGT.3190140212.
- Universal point subsets for planar graphs. In Algorithms and Computation - 23rd International Symposium, ISAAC 2012, volume 7676 of LNCS, pages 423–432. Springer, 2012a. doi:10.1007/978-3-642-35261-4_45.
- SEFE without mapping via large induced outerplane graphs in plane graphs. Journal of Graph Theory, 2015. Also in, Proc. 24th Int. Symp. on Algorithms and Computation, (ISAAC), page 185–195. (2013).
- SEFE without mapping via large induced outerplane graphs in plane graphs. J. Graph Theory, 82(1):45–64, 2016. doi:10.1002/JGT.21884.
- On a tree and a path with no geometric simultaneous embedding. J. Graph Algorithms Appl., 16(1):37–83, 2012b. doi:10.7155/JGAA.00250.
- Superpatterns and universal point sets. J. Graph Algorithms Appl., 18(2):177–209, 2014. doi:10.7155/JGAA.00318.
- Track layouts, layered path decompositions, and leveled planarity. Algorithmica, 81(4):1561–1583, 2019. doi:10.1007/S00453-018-0487-5.
- Column planarity and partially-simultaneous geometric embedding. J. Graph Algorithms Appl., 21(6):983–1002, 2017. doi:10.7155/JGAA.00446.
- Column planarity and partial simultaneous geometric embedding for outerplanar graphs. In Abstracts of the 31st European Workshop on Computational Geometry (EuroCG), pages 53–56. 2015.
- David Barnette. Trees in polyhedral graphs. Canadian Journal of Mathematics, 18:731–736, 1966.
- Therese Biedl. Small drawings of outerplanar graphs, series-parallel graphs, and other planar graphs. Discret. Comput. Geom., 45(1):141–160, 2011. doi:10.1007/S00454-010-9310-Z.
- Circumference of 3-connected claw-free graphs and large Eulerian subgraphs of 3-edge connected graphs. J. Combin. Theory Ser. B, 101:214–236, 2011.
- Simultaneous embedding of planar graphs. In In Roberto Tamassia (editor), Handbook of Graph Drawing and Visualization, pages 349–381. 2013.
- Longest cycles in 3-connected 3-regular graphs. Canadian Journal of Mathematics, 32:987–992, 1980.
- Prosenjit Bose. On embedding an outer-planar graph in a point set. In Graph Drawing, 5th International Symposium, GD ’97, volume 1353 of LNCS, pages 25–36. Springer, 1997. doi:10.1007/3-540-63938-1_47.
- Connected dominating sets in triangulations. CoRR, abs/2312.03399, 2023. doi:10.48550/ARXIV.2312.03399. doi:10.48550/arXiv.2312.03399.
- A polynomial bound for untangling geometric planar graphs. Discret. Comput. Geom., 42(4):570–585, 2009. doi:10.1007/S00454-008-9125-3.
- Selected open problems in graph drawing. In Graph Drawing, volume 2912 of LNCS, pages 515–539. Springer, 2003.
- On simultaneous planar graph embeddings. Comput. Geom., 36(2):117–130, 2007. Also in, 8th Int. Workshop on Algorithms and Data Structures (WADS), pages 243–255. (2003).
- Upper bound constructions for untangling planar geometric graphs. SIAM J. Discret. Math., 28(4):1935–1943, 2014. doi:10.1137/130924172.
- On universal point sets for planar graphs. In Computational Geometry and Graphs - Thailand-Japan Joint Conference, (TJJCCGG), pages 30–41. 2012.
- Straight line embeddings of planar graphs on point sets. In Proceedings of the 8th Canadian Conference on Computational Geometry, CCCG 1996, pages 312–318. 1996.
- Josef Cibulka. Untangling polygons and graphs. Discret. Comput. Geom., 43(2):402–411, 2010. doi:10.1007/S00454-009-9150-X.
- Drawing planar graphs with many collinear vertices. J. Comput. Geom., 9(1):94–130, 2018. doi:10.20382/JOCG.V9I1A4.
- Matched drawings of planar graphs. J. Graph Algorithms Appl., 13(3):423–445, 2009.
- Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer, 5th edition, 2018.
- Vida Dujmović. The utility of untangling. J. Graph Algorithms Appl., 21(1):121–134, 2017. doi:10.7155/JGAA.00407. Also in, Graph Drawing and Network Visualization - 23rd International Symposium, GD 2015.
- Dual circumference and collinear sets. Discret. Comput. Geom., 69(1):26–50, 2023. doi:10.1007/S00454-022-00418-4.
- Every collinear set in a planar graph is free. Discret. Comput. Geom., 65(4):999–1027, 2021. doi:10.1007/S00454-019-00167-X.
- Characterization of unlabeled level planar trees. Comput. Geom., 42(6-7):704–721, 2009.
- Column planarity and partial simultaneous geometric embedding. In Graph Drawing - 22nd International Symposium, GD 2014, volume 8871 of LNCS, pages 259–271. Springer, 2014. doi:10.1007/978-3-662-45803-7_22.
- Straight-line drawings on restricted integer grids in two and three dimensions. Journal of Graph Algorithms and Applications, 7(4):363–398, 2003. doi:10.7155/jgaa.00075.
- Small sets supporting fáry embeddings of planar graphs. In Janos Simon, editor, Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 426–433. ACM, 1988. doi:10.1145/62212.62254.
- How to draw a planar graph on a grid. Comb., 10(1):41–51, 1990. doi:10.1007/BF02122694.
- István Fáry. On straight-line representation of planar graphs. Acta Sci. Math. (Szeged), 11:229–233, 1948.
- New bounds on the local and global edge-length ratio of planar graphs. CoRR, abs/2311.14634, 2023. doi:10.48550/ARXIV.2311.14634. doi:10.48550/arXiv.2311.14634.
- How many vertex locations can be arbitrarily chosen when drawing planar graphs? CoRR, abs/1212.0804, 2012. doi:10.48550/arXiv.1212.0804.
- Untangling a planar graph. Discret. Comput. Geom., 42(4):542–569, 2009. doi:10.1007/S00454-008-9130-6.
- Embedding a planar triangulation with vertices at specified points (solution to problem e3341). Amer. Math. Monthly, 98:165–166, 1991.
- Shortness exponents of families of graphs. Journal of Combinatorial Theory, Series A, 14(3):364–385, 1973. doi:https://doi.org/10.1016/0097-3165(73)90012-5.
- Bill Jackson. Longest cycles in 3-connected cubic graphs. J. Combin. Theory Ser. B, 41:17–26, 1986.
- Untangling planar graphs from a specified vertex position - hard cases. Discret. Appl. Math., 159(8):789–799, 2011. doi:10.1016/J.DAM.2011.01.011.
- Triangulating planar graphs while minimizing the maximum degree. Inf. Comput., 135(1):1–14, 1997. doi:10.1006/inco.1997.2635.
- Circumference of 3-connected cubic graphs. J. Comb. Theory, Ser. B, 128:134–159, 2018. doi:10.1016/j.jctb.2017.08.008.
- Peter J. Owens. Regular planar graphs with faces of only two types and shortness parameters. J. Graph Theory, 8(2):253–275, 1984. doi:10.1002/JGT.3190080207.
- Untangling a polygon. Discret. Comput. Geom., 28(4):585–592, 2002. doi:10.1007/S00454-002-2889-Y. Also in, Graph Drawing, 9th International Symposium, GD 2001.
- Monotone drawings of planar graphs. J. Graph Theory, 46(1):39–47, 2004. doi:10.1002/JGT.10168.
- On collinear sets in straight-line drawings. In Proc. 37th International Workshop on Graph-Theoretic Concepts in Computer Science, (WG), pages 295–306. 2011.
- The four-colour theorem. J. Comb. Theory, Ser. B, 70(1):2–44, 1997. doi:10.1006/jctb.1997.1750.
- A note on universal point sets for planar graphs. J. Graph Algorithms Appl., 24(3):247–267, 2020a. doi:10.7155/JGAA.00529.
- A note on universal point sets for planar graphs. J. Graph Algorithms Appl., 24(3):247–267, 2020b. doi:10.7155/JGAA.00529.
- Walter Schnyder. Embedding planar graphs on the grid. In David S. Johnson, editor, Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, 22-24 January 1990, San Francisco, California, USA, pages 138–148. SIAM, 1990.
- Sherman K. Stein. Convex maps. Proceedings of the American Mathematical Society, 2(3):464–466, 1951. doi:10.2307/2031777.
- Raphael Steiner. A logarithmic bound for simultaneous embeddings of planar graphs. In Graph Drawing and Network Visualization - 31st International Symposium, GD 2023, volume 14466 of LNCS, pages 133–140. Springer, 2023. doi:10.1007/978-3-031-49275-4_9.
- Peter Guthrie Tait. Remarks on the colouring of maps. Proc. Roy. Soc. Edinburgh Sect. A, 10:729, 1880.
- William T. Tutte. On Hamilton circuits. J. Lond. Math. Soc., 21:98–101, 1946.
- William T. Tutte. How to draw a graph. Proceedings of The London Mathematical Society, 13:743–767, 1963.
- Klaus Wagner. Bemerkungen zum vierfarbenproblem. Jahresbericht der Deutschen Mathematiker-Vereinigung, 46:26–32, 1936.