Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Comparative Analysis of Visual Odometry in Virtual and Real-World Railways Environments (2403.17084v1)

Published 25 Mar 2024 in cs.RO and cs.CV

Abstract: Perception tasks play a crucial role in the development of automated operations and systems across multiple application fields. In the railway transportation domain, these tasks can improve the safety, reliability, and efficiency of various perations, including train localization, signal recognition, and track discrimination. However, collecting considerable and precisely labeled datasets for testing such novel algorithms poses extreme challenges in the railway environment due to the severe restrictions in accessing the infrastructures and the practical difficulties associated with properly equipping trains with the required sensors, such as cameras and LiDARs. The remarkable innovations of graphic engine tools offer new solutions to craft realistic synthetic datasets. To illustrate the advantages of employing graphic simulation for early-stage testing of perception tasks in the railway domain, this paper presents a comparative analysis of the performance of a SLAM algorithm applied both in a virtual synthetic environment and a real-world scenario. The analysis leverages virtual railway environments created with the latest version of Unreal Engine, facilitating data collection and allowing the examination of challenging scenarios, including low-visibility, dangerous operational modes, and complex environments. The results highlight the feasibility and potentiality of graphic simulation to advance perception tasks in the railway domain.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com