Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Low-Latency and Energy-Efficient Hybrid P2P-CDN Live Video Streaming (2403.16985v1)

Published 25 Mar 2024 in cs.MM

Abstract: Streaming segmented videos over the Hypertext Transfer Protocol (HTTP) is an increasingly popular approach in both live and video-on-demand (VoD) applications. However, designing a scalable and adaptable framework that reduces servers energy consumption and supports low latency and high quality services, particularly for live video streaming scenarios, is still challenging for Over-The-Top (OTT) service providers. To address such challenges, this paper introduces a new hybrid P2P-CDN framework that leverages new networking and computing paradigms, i.e., Network Function Virtualization (NFV) and edge computing for live video streaming. The proposed framework introduces a multi-layer architecture and a tree of possible actions therein (an action tree), taking into account all available resources from peers, edge, and CDN servers to efficiently distribute video fetching and transcoding tasks across a hybrid P2P-CDN network, consequently enhancing the users latency and video quality. We also discuss our testbed designed to validate the framework and compare it with baseline methods. The experimental results indicate that the proposed framework improves user Quality of Experience (QoE), reduces client serving latency, and improves edge server energy consumption compared to baseline approaches.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. Sandvine, “The Global Internet Phenomena Report,” White Paper, January 2023. [Online]. Available: https://www.sandvine.com/phenomena
  2. V. Cisco, “Cisco Visual Networking Index: Forecast and Trends, 2018–2023,” White Paper, 2018. [Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
  3. ISO/IEC. 2019, “Information Technology — Dynamic Adaptive Streaming over HTTP (DASH) — Part 1: Media Presentation Description and Segment Formats,” International Organization for Standardization, International Standard 23009-1:2019, Dec. 2019.
  4. R. Pantos and W. May, “HTTP Live Streaming,” RFC 8216, 2017. [Online]. Available: https://rfc-editor.org/rfc/rfc8216.txt
  5. A. Bentaleb, B. Taani, A. C. Begen, C. Timmerer, and R. Zimmermann, “A Survey on Bitrate Adaptation Schemes for Streaming Media over HTTP,” IEEE Communications Surveys & Tutorials, 2018.
  6. A. A. Barakabitze, N. Barman, A. Ahmad, S. Zadtootaghaj, L. Sun, M. G. Martini, and L. Atzori, “QoE Management of Multimedia Streaming Services in Future Networks: A Tutorial and Survey,” IEEE Communications Surveys & Tutorials, 2019.
  7. N.-N. Dao, A.-T. Tran, N. H. Tu, T. T. Thanh, V. N. Q. Bao, and S. Cho, “A Contemporary Survey on Live Video Streaming from a Computation-Driven Perspective,” ACM Computing Surveys, 2022.
  8. R. Farahani, “CDN and SDN Support and Player Interaction for HTTP Adaptive Video Streaming,” in 12th ACM Multimedia Systems Conf., 2021.
  9. N. Anjum, D. Karamshuk, M. Shikh-Bahaei, and N. Sastry, “Survey on Peer-Assisted Content Delivery Networks,” Computer Networks, 2017.
  10. R. Alimi, R. Penno, Y. Yang, S. Kiesel, S. Previdi, W. Roome, S. Shalunov, and R. Woundy, “Application-Layer Traffic Optimization (ALTO) Protocol,” RFC 7285, 2014.
  11. S. Ellouze, B. Mathieu, and T. Lemlouma, “A Bidirectional Network Collaboration Interface for CDNs and Clouds Services Traffic Optimization,” in IEEE Int’l. Conf. on Communications (ICC), 2013.
  12. M. Zhao, P. Aditya, A. Chen, Y. Lin, A. Haeberlen, P. Druschel, B. Maggs, B. Wishon, and M. Ponec, “Peer-Assisted Content Distribution in Akamai NetSession,” in Internet Measurement Conf., 2013.
  13. Z. Ma, S. Roubia, F. Giroire, and G. Urvoy-Keller, “When Locality is Not Enough: Boosting Peer Selection of Hybrid CDN-P2P Live Streaming Systems using Machine Learning,” in Network Traffic Measurement and Analysis Conf. (IFIP TMA), 2021.
  14. T. T. T. Ha, J. Kim, and J. Nam, “Design and Deployment of Low-Delay Hybrid CDN–P2P Architecture for Live Video Streaming Over the Web,” Wireless Personal Communications, 2017.
  15. H. Yousef, J. Le Feuvre, P.-L. Ageneau, and A. Storelli, “Enabling Adaptive Bitrate Algorithms in Hybrid CDN/P2P Networks,” in 11th ACM Multimedia Systems Conf., 2020.
  16. R. Farahani, F. Tashtarian, A. Erfanian, C. Timmerer, M. Ghanbari, and H. Hellwagner, “ES-HAS: An Edge- and SDN-Assisted Framework for HTTP Adaptive Video Streaming,” in 31st ACM NOSSDAV Workshop, 2021.
  17. R. Farahani, F. Tashtarian, H. Amirpour, C. Timmerer, M. Ghanbari, and H. Hellwagner, “CSDN: CDN-Aware QoE Optimization in SDN-Assisted HTTP Adaptive Video Streaming,” in 46th IEEE Conf. on Local Computer Networks (LCN), 2021.
  18. R. Farahani, F. Tashtarian, C. Timmerer, M. Ghanbari, and H. Hellwagner, “LEADER: A Collaborative Edge- and SDN-Assisted Framework for HTTP Adaptive Video Streaming,” in IEEE Int’l. Conf. on Communications (ICC), 2022.
  19. R. Farahani, M. Shojafar, C. Timmerer, F. Tashtarian, M. Ghanbari, and H. Hellwagner, “ARARAT: A Collaborative Edge-Assisted Framework for HTTP Adaptive Video Streaming,” IEEE Trans. on Network and Service Management, 2022.
  20. R. Farahani, A. Bentaleb, C. Timmerer, M. Shojafar, R. Prodan, and H. Hellwagner, “SARENA: SFC-Enabled Architecture for Adaptive Video Streaming Applications,” in IEEE Int’l. Conf. on Communications (ICC), 2023.
  21. R. Farahani, H. Amirpour, F. Tashtarian, A. Bentaleb, C. Timmerer, H. Hellwagner, and R. Zimmermann, “RICHTER: Hybrid P2P-CDN Architecture for Low Latency Live Video Streaming,” ACM Mile-High Video (MHV), 2022.
  22. R. Farahani, A. Bentaleb, E. Çetinkaya, C. Timmerer, R. Zimmermann, and H. Hellwagner, “Hybrid P2P-CDN Architecture for Live Video Streaming: An Online Learning Approach,” in IEEE Global Communications Conf. (GLOBECOM), 2022.
  23. CTA-5004, “Web Application Video Ecosystem––Common Media Client Data,,” 2020. [Online]. Available: https://cdn.cta.tech/cta/media/media/resources/standards/pdfs/cta-5004-final.pdf
  24. CTA-5006, “Common Media Server Data,,” 2022. [Online]. Available: https://github.com/cta-wave/common-media-server-data
  25. http://www.topology-zoo.org/dataset.html, accessed: 2023-07-26.
  26. R. Ricci, E. Eide, and C. Team, “Introducing CloudLab: Scientific Infrastructure for Advancing Cloud Architectures and Applications,” login:: The Magazine of USENIX & SAGE, 2014.
  27. “AStream: A Rate Adaptation Model for DASH,” accessed: 2023-07-20. [Online]. Available: https://github.com/pari685/AStream
  28. C. Wang, A. Rizk, and M. Zink, “SQUAD: A spectrum-based quality adaptation for dynamic adaptive streaming over HTTP,” in 7th ACM Conf. on Multimedia Systems, 2016.
  29. K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “BOLA: Near-optimal Bitrate Adaptation for Online Videos,” in 35th IEEE Int’l. Conf. on Computer Communications (INFOCOM), 2016.
  30. “CodeCarbon: Estimate and Track Carbon Emissions from Machine Learning Computing,” accessed: 2023-07-26. [Online]. Available: https://github.com/mlco2/codecarbon
  31. “ITU-T. Rec. P.1203. Parametric bitstream-based quality assessment of progressive download and adaptive audiovisual streaming services over reliable transport - video quality estimation module.” [Online]. Available: http://handle.itu.int/11.1002/ps/P1203-01
  32. S. Lederer, C. Müller, and C. Timmerer, “Dynamic Adaptive Streaming over HTTP Dataset,” in 3rd ACM Multimedia Systems Conf., 2012.
  33. Z. Li, A. Aaron, I. Katsavounidis, A. Moorthy, and M. Manohara, “Toward a Practical Perceptual Video Quality Metric,” [Online] https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652, 2016, accessed: 2022-12-25.

Summary

We haven't generated a summary for this paper yet.