Thermodynamics of the quantum Mpemba effect (2403.16959v3)
Abstract: We investigate the quantum Mpemba effect from the perspective of non-equilibrium quantum thermodynamics by studying relaxation dynamics of quantum systems coupled to a Markovian heat bath, which are described by Davies maps. Starting from a state with coherences in the energy eigenbasis, we demonstrate that an exponential speedup to equilibrium will always occur if the state is transformed to a diagonal state in the energy eigenbasis, provided that the spectral gap of the generator is defined by a complex eigenvalue. When the transformed state has a higher nonequilibrium free energy, we argue using thermodynamic reasoning that this is a \textit{genuine} quantum Mpemba effect. Furthermore, we show how a unitary transformation on an initial state can always be constructed to yield the effect and demonstrate our findings by studying the dynamics of both the non-equilibrium free energy and the irreversible entropy production in single and multi-qubit examples.
- E. B. Mpemba and D. G. Osborne, Phys. Educ. 4, 172 (1969).
- G. S. Kell, Am. J. Phys. 37, 564 (1969).
- Aristotle and H. D. L. P., “Book i chapter xii,” in Meteorologica. with an English translation (Harvard University Press, 1952) p. 79–86.
- F. Bacon, Novum Organum, edited by M. Joseph Devey (New York: P.F. Collier, 1902).
- P. Chaddah, S. Dash, K. Kumar, and A. Banerjee, “Overtaking while approaching equilibrium,” (2010), arXiv:1011.3598 .
- H. C. Burridge and P. F. Linden, Sci. Rep. 6, 37665 (2016).
- Z. Lu and O. Raz, Proceedings of the National Academy of Sciences 114, 5083 (2017).
- A. Kumar and J. Bechhoefer, Nature 584, 64 (2020).
- A. Nava and M. Fabrizio, Phys. Rev. B 100, 125102 (2019).
- R. Bao and Z. Hou, “Accelerating relaxation in markovian open quantum systems through quantum reset processes,” (2022), arXiv:2212.11170 .
- S. K. Manikandan, Phys. Rev. Res. 3, 043108 (2021).
- A. K. Chatterjee, S. Takada, and H. Hayakawa, “Multiple quantum mpemba effect: exceptional points and oscillations,” (2023b), arXiv:2311.01347 .
- X. Wang and J. Wang, “Mpemba effects in nonequilibrium open quantum systems,” (2024), arXiv:2401.14259 .
- F. Caceffo, S. Murciano, and V. Alba, “Entangled multiplets, asymmetry, and quantum mpemba effect in dissipative systems,” (2024), arXiv:2402.02918 .
- D. J. Strachan, A. Purkayastha, and S. R. Clark, “Non-markovian quantum mpemba effect,” (2024), arXiv:2402.05756 .
- S. A. Shapira, Y. Shapira, J. Markov, G. Teza, N. Akerman, O. Raz, and R. Ozeri, “The mpemba effect demonstrated on a single trapped ion qubit,” (2024), arXiv:2401.05830 .
- J. Zhang, G. Xia, C.-W. Wu, T. Chen, Q. Zhang, Y. Xie, W.-B. Su, W. Wu, C.-W. Qiu, P. xing Chen, W. Li, H. Jing, and Y.-L. Zhou, “Observation of quantum strong mpemba effect,” (2024), arXiv:2401.15951 .
- S. Yamashika, F. Ares, and P. Calabrese, “Entanglement asymmetry and quantum mpemba effect in two-dimensional free-fermion systems,” (2024), arXiv:2403.04486 .
- S. Liu, H.-K. Zhang, S. Yin, and S.-X. Zhang, “Symmetry restoration and quantum mpemba effect in symmetric random circuits,” (2024), arXiv:2403.08459 [quant-ph] .
- L. K. Joshi, J. Franke, A. Rath, F. Ares, S. Murciano, F. Kranzl, R. Blatt, P. Zoller, B. Vermersch, P. Calabrese, C. F. Roos, and M. K. Joshi, “Observing the quantum mpemba effect in quantum simulations,” (2024), arXiv:2401.04270 .
- E. Davies, J. Funct. Anal. 34, 421 (1979).
- M. J. Donald, J. Stat. Phys. 49, 81 (1987).
- M. Esposito and C. Van den Broeck, EPL 95, 40004 (2011).
- H. Spohn, J. Math. Phys. 19, 1227 (1978).
- G. T. Landi and M. Paternostro, Rev. Mod. Phys. 93, 035008 (2021).
- R. Alicki, Rep. Math. Phys. 10, 249 (1976).
- M. E. Edo and L.-A. Wu, “Study on quantum thermalization from thermal initial states in a superconducting quantum computer,” (2024), arXiv:2403.14630 .
- D. Manzano, AIP Advances 10, 025106 (2020).
- M. Am-Shallem, A. Levy, I. Schaefer, and R. Kosloff, “Three approaches for representing lindblad dynamics by a matrix-vector notation,” (2015), arXiv:1510.08634 .
- R. Bhatia, Matrix analysis (Springer, 1997).
- R. Schmied, “Maximize over permutations,” Wolfram Function Repository (2019), https://resources.wolframcloud.com/FunctionRepository/resources/MaximizeOverPermutations.