Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Neural Network Representations with Prior Knowledge-Based Normalization (2403.16798v3)

Published 25 Mar 2024 in cs.LG, cs.AI, and cs.NE

Abstract: Deep learning models face persistent challenges in training, particularly due to internal covariate shift and label shift. While single-mode normalization methods like Batch Normalization partially address these issues, they are constrained by batch size dependencies and limiting distributional assumptions. Multi-mode normalization techniques mitigate these limitations but struggle with computational demands when handling diverse Gaussian distributions. In this paper, we introduce a new approach to multi-mode normalization that leverages prior knowledge to improve neural network representations. Our method organizes data into predefined structures, or "contexts", prior to training and normalizes based on these contexts, with two variants: Context Normalization (CN) and Context Normalization - Extended (CN-X). When contexts are unavailable, we introduce Adaptive Context Normalization (ACN), which dynamically builds contexts in the latent space during training. Across tasks in image classification, domain adaptation, and image generation, our methods demonstrate superior convergence and performance.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. A. Kessy, A. Lewin, and K. Strimmer, “Optimal whitening and decorrelation,” The American Statistician, vol. 72, no. 4, pp. 309–314, 2018.
  2. Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient backprop,” in Neural networks: Tricks of the trade, pp. 9–50, Springer, 2002.
  3. K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level performance on imagenet classification,” in Proceedings of the IEEE international conference on computer vision, pp. 1026–1034, 2015.
  4. S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” in International conference on machine learning, pp. 448–456, PMLR, 2015.
  5. L. Huang, J. Qin, Y. Zhou, F. Zhu, L. Liu, and L. Shao, “Normalization techniques in training dnns: Methodology, analysis and application,” arXiv preprint arXiv:2009.12836, 2020.
  6. M. M. Kalayeh and M. Shah, “Training faster by separating modes of variation in batch-normalized models,” IEEE transactions on pattern analysis and machine intelligence, vol. 42, no. 6, pp. 1483–1500, 2019.
  7. A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B, vol. 39, no. 1, pp. 1–38, 1977.
  8. J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint arXiv:1607.06450, 2016.
  9. D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normalization: The missing ingredient for fast stylization,” arXiv preprint arXiv:1607.08022, 2016.
  10. Y. Wu and K. He, “Group normalization,” in Proceedings of the European conference on computer vision (ECCV), pp. 3–19, 2018.
  11. V. Dumoulin, J. Shlens, and M. Kudlur, “A learned representation for artistic style,” arXiv preprint arXiv:1610.07629, 2016.
  12. X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz, “Multimodal unsupervised image-to-image translation,” in Proceedings of the European conference on computer vision (ECCV), pp. 172–189, 2018.
  13. A. Krizhevsky, V. Nair, and G. Hinton, “CIFAR-10 (canadian institute for advanced research),” 2009.
  14. A. Krizhevsky, V. Nair, and G. Hinton, “CIFAR-100 (canadian institute for advanced research),” 2009.
  15. Y. Le and X. Yang, “Tiny imagenet visual recognition challenge,” CS 231N, vol. 7, no. 7, p. 3, 2015.
  16. Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
  17. P. Sermanet, S. Chintala, and Y. LeCun, “Convolutional neural networks applied to house numbers digit classification,” in Proceedings of the 21st international conference on pattern recognition (ICPR2012), pp. 3288–3291, IEEE, 2012.
  18. D. Berthelot, R. Roelofs, K. Sohn, N. Carlini, and A. Kurakin, “Adamatch: A unified approach to semi-supervised learning and domain adaptation,” arXiv preprint arXiv:2106.04732, 2021.
  19. I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” arXiv preprint arXiv:1711.05101, 2017.
  20. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  21. G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4700–4708, 2017.
  22. Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu, “Advances in optimizing recurrent networks,” in 2013 IEEE international conference on acoustics, speech and signal processing, pp. 8624–8628, IEEE, 2013.
  23. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” Advances in neural information processing systems, vol. 27, 2014.
  24. A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convolutional generative adversarial networks,” arXiv preprint arXiv:1511.06434, 2015.
  25. C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, et al., “Photo-realistic single image super-resolution using a generative adversarial network,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4681–4690, 2017.
  26. P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional adversarial networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1125–1134, 2017.
  27. A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural network acoustic models,” arXiv preprint arXiv:1303.5778, 2013.
  28. M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans trained by a two time-scale update rule converge to a local nash equilibrium,” in Advances in Neural Information Processing Systems, 2017.
  29. A. Farahani, S. Voghoei, K. Rasheed, and H. R. Arabnia, “A brief review of domain adaptation,” Advances in Data Science and Information Engineering: Proceedings from ICDATA 2020 and IKE 2020, pp. 877–894, 2021.
  30. S. Paul, “Unifying semi-supervised learning and unsupervised domain adaptation with adamatch,” 2019. https://github.com/keras-team/keras-io/tree/master.
  31. S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv preprint arXiv:1605.07146, 2016.
  32. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.
  33. K. Salama, “Implementing the vision transformer (vit) model for image classification,” 2021. https://github.com/keras-team/keras-io/tree/master.
  34. M. Garg, “Pet image classification,” 1021. https://github.com/mayur7garg.
  35. D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful seeding,” Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 1027–1035, 2007.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets