Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Consistency of pion form factor and unpolarized transverse momentum dependent parton distributions beyond leading twist in the light-front quark model (2403.16703v2)

Published 25 Mar 2024 in hep-ph

Abstract: We investigate the interplay among the pion's form factor, transverse momentum dependent distributions (TMDs), and parton distribution functions (PDFs) extending our light-front quark model (LFQM) computation based on the Bakamjian-Thomas construction for the two-point function[41,42] to the three-point and four-point functions. Ensuring the four-momentum conservation at the meson-quark vertex from the Bakamjian-Thomas construction, the meson mass is taken consistently as the corresponding invariant meson mass both in the matrix element and the Lorentz factor in our LFQM computation. We achieve the current-component independence in the physical observables such as the pion form factor and delve into the derivation of unpolarized TMDs and PDFs associated with the forward matrix element. We address the challenges posed by twist-4 TMDs and exhibit the fulfiLLMent of the sum rule. Effectively, our LFQM successfully handles the light-front zero modes and offers insights for broader three-point and four-point functions and related observables.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (88)
  1. G. P. Lepage and S. J. Brodsky, Exclusive processes in perturbative quantum chromodynamics, Phys. Rev. D 22, 2157 (1980).
  2. M. V. Polyakov and C. Weiss, Skewed and double distributions in the pion and the nucleon, Phys. Rev. D 60, 114017 (1999).
  3. C. D. Roberts and A. G. Williams, Dyson-Schwinger equations and their application to hadronic physics, Prog. Part. Nucl. Phys. 33, 477 (1994).
  4. Unpolarized transverse momentum dependent parton distribution functions beyond leading twist in quark models, JHEP 01, 103 (2015).
  5. Transverse pion structure beyond leading twist in constituent models, Eur. Phys. J. C 76, 415 (2016).
  6. Universality of Generalized Parton Distributions in Light-Front Holographic QCD, Phys. Rev. Lett. 120, 182001 (2018).
  7. First Monte Carlo Global QCD Analysis of Pion Parton Distributions, Phys. Rev. Lett. 121, 152001 (2018).
  8. A measurement of the pion charge radius, Phys. Lett. B 146, 116 (1984).
  9. Elastic-Scattering Measurement of the Negative-Pion Radius, Phys. Rev. Lett. 48, 375 (1982).
  10. A measurement of the space-like pion electromagnetic form factor, Nucl. Phys. B 277, 168 (1986).
  11. Measurement of the Charged Pion Electromagnetic Form Factor, Phys. Rev. Lett. 86, 1713 (2001).
  12. Determination of the pion charge form factor for Q2superscript𝑄2Q^{2}italic_Q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 0.60-1.60 GeV22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT, Phys. Rev. C 75, 055205 (2007).
  13. Determination of the Pion Charge Form Factor at Q2=1.60superscript𝑄21.60Q^{2}=1.60italic_Q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 1.60 and 2.45 (GeV/c)2superscriptGeV𝑐2({\rm GeV}/c)^{2}( roman_GeV / italic_c ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, Phys. Rev. Lett. 97, 192001 (2006); Scaling study of the pion electroproduction cross sections, Phys. Rev. C 78, 058201 (2008).
  14. S.D. Drell, T.M. Yan, Massive Lepton-Pair Production in Hadron-Hadron Collisions at High Energies, Phys. Rev. Lett. 25, 316 (1970)[Erratum: Phys. Rev. Lett. 25, 902 (1970)].
  15. J.F. Owens, Q2superscript𝑄2Q^{2}italic_Q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT -dependent parametrizations of pion parton distribution functions, Phys. Rev. D 30, 943 (1984).
  16. Pionic parton distributions, Z. Phys. C 53, 651 (1992).
  17. Parton distributions for the pion extracted from Drell-Yan and prompt photon experiments, Phys. Rev. D 45, 2349 (1992).
  18. Pionic parton distributions revisited, Eur. Phys. J. C 10, 313 (1999).
  19. Pion parton distribution function in the valence region, Phys. Rev. C 72, 065203 (2005).
  20. Dilepton production from polarized hadron hadron collisions, Phys. Rev. D 79, 034005 (2009).
  21. W. Jaus, Relativistic constituent-quark model of electroweak properties of light mesons, Phys. Rev. D 44, 2851 (1991).
  22. W. Jaus, Semileptonic decays of B𝐵Bitalic_B and D𝐷Ditalic_D mesons in the light-front formalism, Phys. Rev. D 41, 3394 (1990).
  23. Mesonic form factors and the Isgur-Wise function on the light front, Phys. Rev. D 55, 1559 (1997).
  24. F. Coester and W. N. Polyzou, Charge form factors of quark-model pions, Phys. Rev. C 71, 028202 (2005).
  25. Mixing angles and electromagnetic properties of ground state pseudoscalar and vector meson nonets in the light-cone quark model, Phys. Rev. D 59, 074015 (1999).
  26. Light-front quark model analysis of exclusive 0−→0−→superscript0superscript00^{-}\to 0^{-}0 start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT → 0 start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT semileptonic heavy meson decays, Phys. Lett. B 460, 461 (1999).
  27. Distribution amplitudes and decay constants for (π,K,ρ,K*)𝜋𝐾𝜌superscript𝐾(\pi,K,\rho,K^{*})( italic_π , italic_K , italic_ρ , italic_K start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ) mesons in the light-front quark model, Phys. Rev. D 75, 034019 (2007).
  28. H.-M. Choi, Decay constants and radiative decays of heavy mesons in light-front quark model, Phys. Rev. D 75, 073016 (2007).
  29. Variational analysis of mass spectra and decay constants for ground state pseudoscalar and vector mesons in the light-front quark model, Phys. Rev. C 92, 055203 (2015).
  30. Mixing effects on 1⁢S1𝑆1S1 italic_S and 2⁢S2𝑆2S2 italic_S state heavy mesons in the light-front quark model, Phys. Rev. D 106, 014009 (2022).
  31. Quantum chromodynamics and other field theories on the light cone, Phys. Rept. 301, 299 (1998).
  32. W. Jaus, Covariant analysis of the light-front quark model, Phys. Rev. D 60, 054026 (1999).
  33. J.P.B.C. de Melo and T. Frederico, Light-front projection of spin-1 electromagnetic current and zero-modes, Phys. Lett. B 708, 87 (2012).
  34. Pair term in the electromagnetic current within the Front-Form dynamics: spin-0 case, Nucl. Phys. A 707, 399 (2002).
  35. Nonvanishing zero modes in the light-front current, Phys. Rev. D 58, 071901(R) (1998).
  36. Regularizing the fermion loop divergencies in the light front meson currents, Phys. Rev. D 63, 074014 (2001).
  37. The vector meson form factor analysis in light-front dynamics, Phys. Rev. D 65, 116001 (2002).
  38. Self-consistent covariant description of vector meson decay constants and chirality-even quark-antiquark distribution amplitudes up to twist 3 in the light-front quark model, Phys. Rev. D 89, 033011 (2014).
  39. Consistency of the light-front quark model with chiral symmetry in the pseudoscalar meson analysis, Phys. Rev. D 91, 014018 (2015).
  40. Two-particle twist-3 distribution amplitudes of the pion and kaon in the light-front quark model, Phys. Rev. D 95, 056002 (2017).
  41. Independence of current components, polarization vectors, and reference frames in the light-front quark model analysis of meson decay constants, Phys. Rev. D 107, 053003 (2023).
  42. Pseudoscalar meson decay constants and distribution amplitudes up to twist-4 in the light-front quark model, Phys. Rev. D 108, 013006 (2023).
  43. H.-M. Choi, Self-consistent light-front quark model analysis of B→D⁢ℓ⁢νℓ→𝐵𝐷ℓsubscript𝜈ℓB\to D\ell\nu_{\ell}italic_B → italic_D roman_ℓ italic_ν start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT transition form factors, Phys. Rev. D 103, 073004 (2021).
  44. H.-M. Choi, Current-component independent transition form factors for semileptonic and rare D→π⁢(K)→𝐷𝜋𝐾D\to\pi(K)italic_D → italic_π ( italic_K ) decays in the light-front quark model, Adv. High Energy Phys. 2021, 4277321 (2021).
  45. B. Bakamjian and L. H. Thomas, Relativistic particle dynamics. II, Phys. Rev. 92, 1300 (1953).
  46. Relativistic Hamiltonian dynamics in nuclear and particle physics, Adv. Nucl. Phys. 20, 225 (1991).
  47. H. J. Melosh, Quarks: Currents and constituents, Phys. Rev. D 9, 1095 (1974).
  48. Semileptonic and radiative decays of the Bcsubscript𝐵𝑐B_{c}italic_B start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT meson in the light-front quark model, Phys. Rev. D 80, 054016 (2009).
  49. The Review of Particle Physics, Prog. Theor. Exp. Phys. 2022, 083C01 (2022) and 2023 update.
  50. Exclusive processes in quantum chromodynamics: Evolution equations for hadronic wavefunctions and the form factors of mesons, Phys. Lett. B 87, 359 (1979).
  51. A. V. Efremov and A. V. Radyushkin, Factorization and asymptotic behaviour of pion form factor in QCD, Phys. Lett. B 94, 245 (1980).
  52. D. Müller, Evolution of the pion distribution amplitude in next-to-leading order, Phys. Rev. D 51, 3855 (1995).
  53. E. R. Arriola and W. Broniowski, Pion light-cone wave function and pion distribution amplitude in the Nambu-Jona-Lasinio model, Phys. Rev. D 66, 094016 (2002).
  54. S. J. Brodsky and G. F. de Teramond, Hadronic Spectra and Light-Front Wave Functions in Holographic QCD, Phys. Rev. Lett. 96, 201601 (2006).
  55. S. J. Brodsky and G. F. de Teramond, Light-front dynamics and AdS/QCD correspondence: The pion form factor in the space- and time-like regions, Phys. Rev. D 77, 056007 (2008).
  56. Evolved QCD predictions for the meson-photon transition form factors, Phys. Rev. D 84, 033001 (2011).
  57. Drawing insights from pion parton distributions, Chin. Phys. (Lett.) 44, 031002 (2020).
  58. Symmetry, symmetry breaking, and pion parton distributions, Phys. Rev. D 101, 054014 (2020).
  59. Kaon and pion parton distributions, Eur. Phys. J. C 80, 1064 (2020).
  60. R. Jakob, P.J. Mulders and J. Rodrigues, Modeling quark distribution and fragmentation functions, Nucl. Phys. A 626, 937 (1997).
  61. P. Schweitzer, Chirally-odd twist-3 distribution function ea⁢(x)superscript𝑒𝑎𝑥e^{a}(x)italic_e start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT ( italic_x ) in the chiral quark soliton model, Phys. Rev. D 81, 074035 (2010).
  62. Transverse momentum dependent distribution functions in the bag model, Phys. Rev. D 67, 114010 (2003).
  63. R. L. Jaffe, Parton distribution functions for twist 4, Nucl. Phys. B 229, 205 (1983).
  64. QCD power corrections to deep inelastic scattering, Phys. Lett. B 105, 65 (1981).
  65. Twist-4 in the QCD analysis of leptoproduction, Phys. Lett. B 105, 467 (1981).
  66. R.K. Ellis, W. Furmanski and R. Petronzio, Unravelling higher twists, Nucl. Phys. B 212, 29 (1983).
  67. J.-W. Qiu, Twist-4 contributions to the hadron structure functions, Phys. Rev. D 42, 30 (1990).
  68. X.-D. Ji, The nucleon structure functions from deep-inelastic scattering with electroweak currents, Nucl. Phys. B 402, 217 (1993).
  69. Parton distribution functions from nonlocal light-cone operators with definite twist, Phys. Rev. D 63, 094003 (2001).
  70. W. I. Weisberger, Partons, Electromagnetic Mass Shifts, and the Approach to Scaling, Phys. Rev. D 5, 2600 (1972).
  71. Illuminating the 1/x1𝑥1/x1 / italic_x moment of parton distribution functions, eConf C 070910, 149 (2007).
  72. Y.L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering and e+⁢e−superscript𝑒superscript𝑒e^{+}e^{-}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT Annihilation by Perturbation Theory in Quantum Chromodynamics, Zh. Eksp. Teor. Fiz. 73, 1216 (1977) [Sov. Phys. JETP 46, 641 (1977)].
  73. V. N. Gribov and L. N. Lipatov, Deep inelastic e⁢p𝑒𝑝epitalic_e italic_p scattering in perturbation theory, Yad. Fiz. 15, 781 (1972) [Sov. J. Nucl. Phys. 15, 438 (1972)].
  74. Asymptotic freedom in parton language, Nucl. Phys. B126, 298 (1977).
  75. A Higher Order Perturbative Parton Evolution Toolkit (HOPPET), Comput. Phys. Commun. 180, 120 (2009).
  76. Helicity-dependent generalized parton distributions in constituent quark models, Nucl. Phys. B 680, 147 (2004).
  77. Pion transverse momentum dependent parton distributions in a light-front constituent approach, and the Boer-Mulders effect in the pion-induced Drell-Yan process, Phys. Rev. D 90, 014050 (2014).
  78. Generalized parton distributions of the pion in chiral quark models and their QCD evolution, Phys. Rev. D 77, 034023 (2008).
  79. Enhancement effects in exclusive π⁢π𝜋𝜋\pi\piitalic_π italic_π and ρ⁢π𝜌𝜋\rho\piitalic_ρ italic_π production in γ*⁢γsuperscript𝛾𝛾\gamma^{*}\gammaitalic_γ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_γ scattering, Phys. Lett. B 675, 38 (2009).
  80. Parton distribution functions with twisted mass fermions, Phys. Lett. B 639, 520 (2006).
  81. S.-I. Nam, Parton-distribution functions for the pion and kaon in the gauge-invariant nonlocal chiral-quark model, Phys. Rev. D 86, 074005 (2012).
  82. Pion valence structure from Ioffe-time parton pseudodistribution functions, Phys. Rev. D 100, 114512 (2019).
  83. ⟨x⟩delimited-⟨⟩𝑥\langle x\rangle⟨ italic_x ⟩ and ⟨x2⟩delimited-⟨⟩superscript𝑥2\langle x^{2}\rangle⟨ italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⟩ of the pion PDF from lattice QCD with Nf=2+1+1subscript𝑁𝑓211N_{f}=2+1+1italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT = 2 + 1 + 1 dynamical quark flavors, Phys. Rev. D 99, 014508 (2019).
  84. Pion valence quark distribution from matrix element calculated in lattice QCD, Phys. Rev. D 99, 074507 (2019).
  85. Electromagnetic form factors in the light-front formalism and the Feynman triangle diagram: Spin-0 and spin-1 two-fermion systems, Phys. Rev. D 65, 094043 (2002).
  86. Experimental study of muon pairs produced by 252-GeV pions on tungsten, Phys. Rev. D 39, 92 (1989).
  87. P. Maris and C. D. Roberts, Pseudovector components of the pion, π0→γ⁢γ→superscript𝜋0𝛾𝛾\pi^{0}\to\gamma\gammaitalic_π start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → italic_γ italic_γ, and Fπ⁢(q2)subscript𝐹𝜋superscript𝑞2F_{\pi}(q^{2})italic_F start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT ( italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ), Phys. Rev. C 58, 3659 (1998).
  88. Pion form factor and quark mass evolution in a light-front Bethe-Salpeter model, Phys. Rev. D 63, 113005 (2001).
Citations (2)

Summary

We haven't generated a summary for this paper yet.