Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Novel Loss Function-based Support Vector Machine for Binary Classification (2403.16654v1)

Published 25 Mar 2024 in cs.LG and math.OC

Abstract: The previous support vector machine(SVM) including $0/1$ loss SVM, hinge loss SVM, ramp loss SVM, truncated pinball loss SVM, and others, overlooked the degree of penalty for the correctly classified samples within the margin. This oversight affects the generalization ability of the SVM classifier to some extent. To address this limitation, from the perspective of confidence margin, we propose a novel Slide loss function ($\ell_s$) to construct the support vector machine classifier($\ell_s$-SVM). By introducing the concept of proximal stationary point, and utilizing the property of Lipschitz continuity, we derive the first-order optimality conditions for $\ell_s$-SVM. Based on this, we define the $\ell_s$ support vectors and working set of $\ell_s$-SVM. To efficiently handle $\ell_s$-SVM, we devise a fast alternating direction method of multipliers with the working set ($\ell_s$-ADMM), and provide the convergence analysis. The numerical experiments on real world datasets confirm the robustness and effectiveness of the proposed method.

Summary

We haven't generated a summary for this paper yet.