Instantaneous Visual Analysis of Blood Flow in Stenoses Using Morphological Similarity (2403.16653v1)
Abstract: The emergence of computational fluid dynamics (CFD) enabled the simulation of intricate transport processes, including flow in physiological structures, such as blood vessels. While these so-called hemodynamic simulations offer groundbreaking opportunities to solve problems at the clinical forefront, a successful translation of CFD to clinical decision-making is challenging. Hemodynamic simulations are intrinsically complex, time-consuming, and resource-intensive, which conflicts with the time-sensitive nature of clinical workflows and the fact that hospitals usually do not have the necessary resources or infrastructure to support CFD simulations. To address these transfer challenges, we propose a novel visualization system which enables instant flow exploration without performing on-site simulation. To gain insights into the viability of the approach, we focus on hemodynamic simulations of the carotid bifurcation, which is a highly relevant arterial subtree in stroke diagnostics and prevention. We created an initial database of 120 high-resolution carotid bifurcation flow models and developed a set of similarity metrics used to place a new carotid surface model into a neighborhood of simulated cases with the highest geometric similarity. The neighborhood can be immediately explored and the flow fields analyzed. We found that if the artery models are similar enough in the regions of interest, a new simulation leads to coinciding results, allowing the user to circumvent individual flow simulations. We conclude that similarity-based visual analysis is a promising approach toward the usability of CFD in medical practice.
- Computational geometry for patient-specific reconstruction and meshing of blood vessels from MR and CT angiography. IEEE Transactions on Medical Imaging 22, 5 (may 2003), 674–684. doi:10.1109/tmi.2003.812261.
- S3 guideline on diagnosis, treatment, and aftercare of extracranial carotid stenosis, 2020. URL: https://register.awmf.org/de/leitlinien/detail/004-028.
- Angelelli P., Hauser H.: Straightening tubular flow for side-by-side visualization. IEEE Transactions on Visualization and Computer Graphics 17, 12 (2011), 2063–2070. doi:10.1109/TVCG.2011.235.
- Geometric determinants of local hemodynamics in severe carotid artery stenosis. Computers in Biology and Medicine 114 (2019), 103436. doi:10.1016/j.compbiomed.2019.103436.
- On the usage of average hausdorff distance for segmentation performance assessment: hidden error when used for ranking. European Radiology Experimental 5, 1 (jan 2021). doi:10.1186/s41747-020-00200-2.
- An inverse approach for automatic segmentation of carotid and vertebral arteries in CTA. Expert Systems with Applications 93 (mar 2018), 358–375. doi:10.1016/j.eswa.2017.10.041.
- Bluestein D.: Utilizing computational fluid dynamics in cardiovascular engineering and medicine - what you need to know. Its translation to the clinic/bedside. Artificial Organs 41, 2 (feb 2017), 117–121. doi:10.1111/aor.12914.
- Illustrative visualization of cardiac and aortic blood flow from 4D MRI data. In IEEE Pacific Visualization Symposium (2013), pp. 129–136.
- Segmentation of interwoven 3D tubular tree structures utilizing shape priors and graph cuts. Medical Image Analysis 14, 2 (apr 2010), 172–184. doi:10.1016/j.media.2009.11.003.
- Conformal mapping of carotid vessel wall and plaque thickness measured from 3D ultrasound images. Medical & Biological Engineering & Computing 55, 12 (jun 2017), 2183–2195. doi:10.1007/s11517-017-1656-4.
- Area-preserving mapping of 3D carotid ultrasound images using density-equalizing reference map. IEEE Transactions on Biomedical Engineering 67, 9 (sep 2020), 2507–2517. doi:10.1109/tbme.2019.2963783.
- Caballero A., Laín S.: A review on computational fluid dynamics modelling in human thoracic aorta. Cardiovascular Engineering and Technology 4, 2 (2013), 103–130. doi:10.1002/mrm.1910400207.
- MONAI: An open-source framework for deep learning in healthcare. doi:https://doi.org/10.48550/arXiv.2211.02701.
- COMSOL Multiphysics: Online at: https://doc.comsol.com/6.0/docserver/, accessed March 2023.
- Fully automated segmentation of carotid and vertebral arteries from contrast enhanced CTA. In SPIE Proceedings (mar 2008), Reinhardt J. M., Pluim J. P. W., (Eds.), SPIE. doi:10.1117/12.770481.
- Eulzer P., Lawonn K.: Carotid Analyzer, 2023. URL: https://github.com/PepeEulzer/CarotidAnalyzer.
- Liver vessels segmentation using a hybrid geometrical moments/graph cuts method. IEEE Transactions on Biomedical Engineering 57, 2 (feb 2010), 276–283. doi:10.1109/tbme.2009.2032161.
- Visualizing carotid blood flow simulations for stroke prevention. Computer Graphics Forum 40, 3 (jun 2021), 435–446. doi:10.1111/cgf.14319.
- Vessel maps: A survey of map-like visualizations of the cardiovascular system. Computer Graphics Forum 41, 3 (jun 2022), 645–673. doi:10.1111/cgf.14576.
- Coherence maps for blood flow exploration. In Eurographics Workshop on Visual Computing for Biology and Medicine (2016), The Eurographics Association. doi:10.2312/vcbm.20161274.
- Automatic cutting and flattening of carotid artery geometries. In Eurographics Workshop on Visual Computing for Biology and Medicine (2021), The Eurographics Association. doi:10.2312/VCBM.20211347.
- A dataset of reconstructed carotid bifurcation lumen and plaque models with centerline tree and simulated hemodynamics, 2024. doi:10.5281/ZENODO.7634643.
- A fully integrated pipeline for visual carotid morphology analysis. Computer Graphics Forum 42, 3 (2023), 25–37. doi:10.1111/cgf.14808.
- The north american symptomatic carotid endarterectomy trial. Stroke 30, 9 (sep 1999), 1751–1758. doi:10.1161/01.str.30.9.1751.
- GBD 2016 Stroke Collaborators: Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the global burden of disease study 2016. The Lancet Neurology 18, 5 (2019), 439 – 458. doi:10.1016/S1474-4422(19)30034-1.
- The flowlens: A focus-and-context visualization approach for exploration of blood flow in cerebral aneurysms. IEEE Transactions on Visualization and Computer Graphics 17, 12 (2011), 2183–2192. doi:10.1109/TVCG.2011.243.
- Gorelick P. B.: The global burden of stroke: persistent and disabling. The Lancet Neurology 18, 5 (2019), 417–418. doi:10.1016/S1474-4422(19)30030-4.
- Guerciotti B., Vergara C.: Computational comparison between newtonian and non-newtonian blood rheologies in stenotic vessels. In Biomedical Technology. Springer International Publishing, aug 2017, pp. 169–183. doi:10.1007/978-3-319-59548-1_10.
- The definition of low wall shear stress and its effect on plaque progression estimation in human coronary arteries. Scientific Reports 11, 1 (nov 2021). doi:10.1038/s41598-021-01232-3.
- Risk factors for perioperative death and stroke after carotid endarterectomy: results of the New York carotid artery surgery study. Stroke 40, 1 (2009), 221–229. doi:10.1161/STROKEAHA.108.524785.
- Comparison techniques utilized in spatial 3D and 4D data visualizations: A survey and future directions. Computers & Graphics 67 (2017), 138–147.
- Volumetric flow assessment in extracranial arteries in patients with 70-99% internal carotid artery stenosis. Diagnostics (Basel) 12, 9 (Sep 2022). doi:10.3390/diagnostics12092216.
- A survey of flattening-based medical visualization techniques. In Computer Graphics Forum (2018), vol. 37, pp. 597–624. doi:10.1111/cgf.13445.
- Kovesi P.: Good colour maps: How to design them, colorcet.com, 2015. doi:10.48550/ARXIV.1509.03700.
- Kutta W.: Beitrag zur näherungsweisen Integration totaler Differentialgleichungen. Z. Math. Phys. 46 (1901), 435–453.
- A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes. Medical Image Analysis 13, 6 (2009), 819–845.
- Lee W.: General principles of carotid doppler ultrasonography. Ultrasonography 33, 1 (dec 2013), 11–17. doi:10.14366/usg.13018.
- Hemodynamic factors affecting carotid sinus atherosclerotic stenosis. World Neurosurgery 121 (jan 2019), e262–e276. doi:10.1016/j.wneu.2018.09.091.
- The effect of patient-specific non-newtonian blood viscosity on arterial hemodynamics predictions. Journal of Mechanics in Medicine and Biology 19, 08 (2019), 1940054. doi:10.1142/S0219519419400542.
- Liskowski P., Krawiec K.: Segmenting retinal blood vessels with deep neural networks. IEEE Transactions on Medical Imaging 35, 11 (nov 2016), 2369–2380. doi:10.1109/tmi.2016.2546227.
- Blood flow simulations in patient-specific geometries of the carotid artery: A systematic review. Journal of Biomechanics 111 (2020), 110019. doi:10.1016/j.jbiomech.2020.110019.
- The importance of blood rheology in patient-specific computational fluid dynamics simulation of stenotic carotid arteries. Biomechanics and Modeling in Mechanobiology 19, 5 (2020), 1477–1490. doi:10.1007/s10237-019-01282-7.
- Visual analysis of aneurysm data using statistical graphics. IEEE Transactions on Visualization and Computer Graphics 25, 1 (jan 2019), 997–1007. doi:10.1109/tvcg.2018.2864509.
- Semi-automatic vortex flow classification in 4D PC-MRI data of the aorta. Computer Graphics Forum 35, 3 (2016), 351–360. doi:https://doi.org/10.1111/cgf.12911.
- Variability in doppler ultrasound influences referral of patients for carotid surgery. European Journal of Ultrasound 12, 2 (dec 2000), 137–143. doi:10.1016/s0929-8266(00)00111-7.
- Combined visualization of vessel deformation and hemodynamics in cerebral aneurysms. IEEE Transactions on Visualization and Computer Graphics 23, 1 (2016), 761–770. doi:10.1109/TVCG.2016.2598795.
- Glyph-based comparative stress tensor visualization in cerebral aneurysms. In Computer Graphics Forum (2017), vol. 36, pp. 99–108. doi:10.1111/cgf.13171.
- COMFIS – comparative visualization of simulated medical flow data. In Eurographics Workshop on Visual Computing for Biology and Medicine (2022).
- Vessel enhancing diffusion: A scale space representation of vessel structures. Medical Image Analysis 10, 6 (dec 2006), 815–825. doi:10.1016/j.media.2006.06.003.
- Deep learning for multi-task medical image segmentation in multiple modalities. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. Springer International Publishing, 2016, pp. 478–486. doi:10.1007/978-3-319-46723-8_55.
- The impact of helical flow on coronary atherosclerotic plaque development. Atherosclerosis 300 (may 2020), 39–46. doi:10.1016/j.atherosclerosis.2020.01.027.
- Generation and visual exploration of medical flow data: Survey, research trends and future challenges. In Computer Graphics Forum (2019), vol. 38, pp. 87–125. doi:10.1111/cgf.13394.
- Blood flow clustering and applications in virtual stenting of intracranial aneurysms. IEEE Transactions on Visualization and Computer Graphics 20, 5 (2014), 686–701. doi:10.1109/TVCG.2013.2297914.
- Panerai R. B.: Cerebral autoregulation: From models to clinical applications. Cardiovascular Engineering 8, 1 (nov 2007), 42–59. doi:10.1007/s10558-007-9044-6.
- Economic burden of stroke: a systematic review on post-stroke care. The European Journal of Health Economics 20, 1 (2019), 107–134. doi:10.1007/s10198-018-0984-0.
- Ryu J., ichiro Kamata S.: An efficient computational algorithm for hausdorff distance based on points-ruling-out and systematic random sampling. Pattern Recognition 114 (jun 2021), 107857. doi:10.1016/j.patcog.2021.107857.
- Longitudinal wall shear stress evaluation using centerline projection approach in the numerical simulations of the patient-based carotid artery. Computer Methods in Biomechanics and Biomedical Engineering 27, 3 (2024), 347–364. doi:10.1080/10255842.2023.2185478.
- Runge C.: Über die numerische Auflösung von Differentialgleichungen. Mathematische Annalen 46, 2 (1895), 167–178. doi:10.1007/BF01446807.
- A survey on skeletonization algorithms and their applications. Pattern Recognition Letters 76 (jun 2016), 3–12. doi:10.1016/j.patrec.2015.04.006.
- Computational simulation of carotid stenosis and flow dynamics based on patient ultrasound data – a new tool for risk assessment and surgical planning. Advances in Medical Sciences 61, 1 (mar 2016), 32–39. doi:10.1016/j.advms.2015.07.009.
- Szajer J., Ho-Shon K.: A comparison of 4D flow MRI-derived wall shear stress with computational fluid dynamics methods for intracranial aneurysms and carotid bifurcations: A review. Magnetic Resonance Imaging 48 (2018), 62–69. doi:10.1016/j.mri.2017.12.005.
- ZerNet: Convolutional neural networks on arbitrary surfaces via zernike local tangent space estimation. Computer Graphics Forum 39, 6 (may 2020), 204–216. doi:10.1111/cgf.14012.
- Interactive lenses for visualization: An extended survey. Computer Graphics Forum 36, 6 (may 2016), 173–200. doi:10.1111/cgf.12871.
- Scatter search and local nlp solvers: A multistart framework for global optimization. INFORMS Journal on Computing 19, 3 (2007), 328–340. doi:10.1287/ijoc.1060.0175.
- Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Computer Cethods In Applied Mechanics And Engineering 195, 29-32 (June 2006), 3776–3796.
- Visual exploration of simulated and measured blood flow. In Scientific Visualization. Springer, London, 2014, pp. 305–324. doi:10.1007/978-1-4471-6497-5_25.
- Blood density is nearly equal to water density: A validation study of the gravimetric method of measuring intraoperative blood loss. Journal of Veterinary Medicine 2015 (2015), 1–4. doi:10.1155/2015/152730.
- Weigand C.: Strömungsanalysen in der Karotisbifurkation. PhD thesis, Technische Universität München, 2000.
- Deep vessel tracking: A generalized probabilistic approach via deep learning. In 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI) (apr 2016), IEEE. doi:10.1109/isbi.2016.7493520.
- Fully automatic deep learning trained on limited data for carotid artery segmentation from large image volumes. Quantitative Imaging in Medicine and Surgery 11, 1 (jan 2021), 67–83. doi:10.21037/qims-20-286.