Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Guided Bayesian Optimization: Data-Efficient Controller Tuning with Digital Twin (2403.16619v1)

Published 25 Mar 2024 in eess.SY and cs.SY

Abstract: This article presents the guided Bayesian optimization algorithm as an efficient data-driven method for iteratively tuning closed-loop controller parameters using an event-triggered digital twin of the system based on available closed-loop data. We define a controller tuning framework independent of the controller or the plant structure. Our proposed methodology is model-free, making it suitable for nonlinear and unmodelled plants with measurement noise. The objective function consists of performance metrics modeled by Gaussian processes. We utilize the available information in the closed-loop system to identify and progressively maintain a digital twin that guides the optimizer, improving the data efficiency of our method. Switching the digital twin on and off is triggered by data-driven criteria related to the digital twin's uncertainty estimations in the BO tuning framework. Effectively, it replaces much of the exploration of the real system with exploration performed on the digital twin. We analyze the properties of our method in simulation and demonstrate its performance on two real closed-loop systems with different plant and controller structures. The experimental results show that our method requires fewer experiments on the physical plant than Bayesian optimization to find the optimal controller parameters.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. R. P. Borase, D. Maghade, S. Sondkar, and S. Pawar, “A review of pid control, tuning methods and applications,” International Journal of Dynamics and Control, vol. 9, pp. 818–827, 2021.
  2. G. Cavone, A. Bozza, R. Carli, and M. Dotoli, “Mpc-based process control of deep drawing: An industry 4.0 case study in automotive,” IEEE Transactions on Automation Science and Engineering, vol. 19, no. 3, pp. 1586–1598, 2022.
  3. K. Astrom and R. Murray, “Feedback systems: An introduction for scientists and engineers 2010 princeton.”
  4. Y. Tao, L. Li, H.-X. Li, and L. Zhu, “High-bandwidth tracking control of piezoactuated nanopositioning stages via active modal control,” IEEE Transactions on Automation Science and Engineering, vol. 19, no. 4, pp. 2998–3006, 2022.
  5. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95-international conference on neural networks, vol. 4.   IEEE, 1995, pp. 1942–1948.
  6. Z. Qi, Q. Shi, and H. Zhang, “Tuning of digital pid controllers using particle swarm optimization algorithm for a can-based dc motor subject to stochastic delays,” IEEE Transactions on Industrial Electronics, vol. 67, no. 7, pp. 5637–5646, 2020.
  7. K. Magkoutas, L. Nunes Rossato, M. Heim, and M. Schmid Daners, “Genetic algorithm-based optimization framework for control parameters of ventricular assist devices,” Biomedical Signal Processing and Control, vol. 85, p. 104788, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1746809423002215
  8. C. Novara and S. Formentin, “Data-driven inversion-based control of nonlinear systems with guaranteed closed-loop stability,” IEEE Transactions on Automatic Control, vol. 63, no. 4, pp. 1147–1154, 2017.
  9. A. Alanwar, Y. Stürz, and K. H. Johansson, “Robust data-driven predictive control using reachability analysis,” arXiv preprint arXiv:2103.14110, 2021.
  10. G. Dulac-Arnold, D. Mankowitz, and T. Hester, “Challenges of Real-World Reinforcement Learning,” apr 2019. [Online]. Available: https://arxiv.org/abs/1904.12901v1
  11. G. Schoettler, A. Nair, J. A. Ojea, S. Levine, and E. Solowjow, “Meta-reinforcement learning for robotic industrial insertion tasks,” IEEE International Conference on Intelligent Robots and Systems, pp. 9728–9735, oct 2020.
  12. Z. Afkhami, D. J. Hoelzle, and K. Barton, “Robust higher-order spatial iterative learning control for additive manufacturing systems,” IEEE Transactions on Control Systems Technology, 2023.
  13. M. Wang, K. Kang, C. Zhang, and L. Li, “Precise position control in air-bearing pmlsm system using an improved anticipatory fractional-order iterative learning control,” IEEE Transactions on Industrial Electronics, 2023.
  14. D. Liao-McPherson, E. C. Balta, A. Rupenyan, and J. Lygeros, “On robustness in optimization-based constrained iterative learning control,” IEEE Control Systems Letters, vol. 6, pp. 2846–2851, 2022.
  15. K. Dimitropoulos, I. Hatzilygeroudis, and K. Chatzilygeroudis, “A brief survey of sim2real methods for robot learning,” in International Conference on Robotics in Alpe-Adria Danube Region.   Springer, 2022, pp. 133–140.
  16. W. Yu, J. Tan, C. K. Liu, and G. Turk, “Preparing for the unknown: Learning a universal policy with online system identification,” 2017.
  17. K. Wang, C. Mu, Z. Ni, and D. Liu, “Safe reinforcement learning and adaptive optimal control with applications to obstacle avoidance problem,” IEEE Transactions on Automation Science and Engineering, pp. 1–14, 2023.
  18. X. Li, W. Shang, and S. Cong, “Model-Based Reinforcement Learning for Robot Control,” ICARM 2020 - 2020 5th IEEE International Conference on Advanced Robotics and Mechatronics, pp. 300–305, dec 2020.
  19. H. Han, S. Fu, H. Sun, and J. Qiao, “Data-driven multimodel predictive control for multirate sampled-data nonlinear systems,” IEEE Transactions on Automation Science and Engineering, vol. 20, no. 3, pp. 2182–2194, 2023.
  20. P. Zhou, S. Zhang, L. Wen, J. Fu, T. Chai, and H. Wang, “Kalman filter-based data-driven robust model-free adaptive predictive control of a complicated industrial process,” IEEE Transactions on Automation Science and Engineering, vol. 19, no. 2, pp. 788–803, 2022.
  21. A. Rupenyan, M. Khosravi, and J. Lygeros, “Performance-based trajectory optimization for path following control using bayesian optimization,” in 2021 60th IEEE Conference on Decision and Control (CDC), 2021, pp. 2116–2121.
  22. M. Khosravi, A. Eichler, N. Schmid, R. S. Smith, and P. Heer, “Controller tuning by Bayesian optimization An application to a heat pump,” European Control Conference (ECC), pp. 1467–1472, June 2019.
  23. X. Guidetti, A. Rupenyan, L. Fassl, M. Nabavi, and J. Lygeros, “Plasma spray process parameters configuration using sample-efficient batch bayesian optimization,” 2021.
  24. Y. Tao, J. Li, G. Gao, Z. Liu, and S. Rinderknecht, “Goal-oriented data-driven control for a holistic thermal management system of an electric vehicle,” IEEE Transactions on Automation Science and Engineering, pp. 1–12, 2023.
  25. M. Turchetta, A. Krause, and S. Trimpe, “Robust model-free reinforcement learning with multi-objective bayesian optimization,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020, pp. 10 702–10 708.
  26. P. Ngatchou, A. Zarei, and A. El-Sharkawi, “Pareto multi objective optimization,” in Proceedings of the 13th International Conference on, Intelligent Systems Application to Power Systems, 2005, pp. 84–91.
  27. M. Khosravi, C. König, M. Maier, R. S. Smith, J. Lygeros, and A. Rupenyan, “Safety-aware cascade controller tuning using constrained bayesian optimization,” IEEE Transactions on Industrial Electronics, vol. 70, no. 2, pp. 2128–2138, 2023.
  28. J. van Niekerk, J. le Roux, and I. Craig, “On-line automatic controller tuning of a multivariable grinding mill circuit using bayesian optimisation,” Journal of Process Control, vol. 128, p. 103008, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0959152423000938
  29. W. Xu, C. N. Jones, B. Svetozarevic, C. R. Laughman, and A. Chakrabarty, “Vabo: Violation-aware bayesian optimization for closed-loop control performance optimization with unmodeled constraints,” in 2022 American Control Conference (ACC), 2022, pp. 5288–5293.
  30. X. Wang, Y. Jin, S. Schmitt, and M. Olhofer, “Recent advances in bayesian optimization,” ACM Computing Surveys, vol. 55, no. 13s, pp. 1–36, 2023.
  31. M. Maier, A. Rupenyan, C. Bobst, and K. Wegener, “Self-optimizing grinding machines using gaussian process models and constrained bayesian optimization,” The International Journal of Advanced Manufacturing Technology, vol. 108, no. 1-2, p. 539–552, May 2020. [Online]. Available: http://dx.doi.org/10.1007/s00170-020-05369-9
  32. M. D. McKay, R. J. Beckman, and W. J. Conover, “A comparison of three methods for selecting values of input variables in the analysis of output from a computer code,” Technometrics, vol. 42, no. 1, pp. 55–61, 2000.
  33. M. A. Gelbart, J. Snoek, and R. P. Adams, “Bayesian optimization with unknown constraints,” 2014.
  34. A. D. Bull, “Convergence rates of efficient global optimization algorithms,” Journal of Machine Learning Research, vol. 12, p. 2879 – 2904, 2011, cited by: 372. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-80555140070&partnerID=40&md5=5a551a3ee84a7d70d275bff6b91f3316
  35. D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimization of expensive black-box functions,” Journal of Global Optimization, vol. 13, no. 4, p. 455 – 492, 1998, cited by: 5458. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0000561424&doi=10.1023%2fA%3a1008306431147&partnerID=40&md5=359bd1ff3782be7bf102567e101479c4
  36. M. Gilson, “What has instrumental variable method to offer for system identification?” IFAC-PapersOnLine, vol. 48, no. 1, pp. 354–359, 2015, 8th Vienna International Conferenceon Mathematical Modelling. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2405896315001779
  37. B. Sukhija, M. Turchetta, D. Lindner, A. Krause, S. Trimpe, and D. Baumann, “Gosafeopt: Scalable safe exploration for global optimization of dynamical systems,” Artificial Intelligence, vol. 320, p. 103922, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0004370223000681
  38. M. Zagorowska, E. C. Balta, V. Behrunani, A. Rupenyan, and J. Lygeros, “Efficient sample selection for safe learning*,” IFAC-PapersOnLine, vol. 56, no. 2, pp. 10 107–10 112, 2023, 22nd IFAC World Congress. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2405896323012624
  39. M. Khosravi, V. N. Behrunani, P. Myszkorowski, R. S. Smith, A. Rupenyan, and J. Lygeros, “Performance-driven cascade controller tuning with bayesian optimization,” IEEE Transactions on Industrial Electronics, vol. 69, no. 1, pp. 1032–1042, 2022.
  40. J. Keller, “Interactive control system design,” Control Engineering Practice, vol. 14, no. 2, pp. 177–184, 2006, special Section on Advances in Control Education. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0967066105000031
  41. M. S. Fadali and A. Visioli, “Chapter 4 - Stability of Digital Control Systems,” in Digital Control Engineering, M. S. Fadali and A. Visioli, Eds.   Boston: Academic Press, 2009, pp. 87–121. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780123744982000047
  42. W. K. Ho, C. C. Hang, and L. S. Cao, “Tuning of PID controllers based on gain and phase margin specifications,” Automatica, vol. 31, no. 3, pp. 497–502, mar 1995.
  43. D. Maiti, A. Acharya, M. Chakraborty, A. Konar, and R. Janarthanan, “Tuning PID and PIλ𝜆{}^{\lambda}start_FLOATSUPERSCRIPT italic_λ end_FLOATSUPERSCRIPTDδ𝛿{}^{\delta}start_FLOATSUPERSCRIPT italic_δ end_FLOATSUPERSCRIPT controllers using the integral time absolute error criterion,” in 2008 4th International Conference on Information and Automation for Sustainability, 2008, pp. 457–462.
  44. “Erweiterbarer, Umweltfreundlicher, Leistungsfähiger ETH-Rechner (Euler),” https://scicomp.ethz.ch/wiki/Euler, accessed: 2023-05-23.
  45. T. M. Inc., “Matlab version: 23.2.0.2380103 (r2023b) update 1,” Natick, Massachusetts, United States, 2023. [Online]. Available: https://www.mathworks.com
  46. Linmot linear modules dm01. [Online]. Available: https://linmot.com/products/linear-guides-linear-modules/linear-modules-dm01/
Citations (1)

Summary

We haven't generated a summary for this paper yet.