Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hybrid low-dimensional limiting state of charge estimator for multi-cell lithium-ion batteries (2403.16555v1)

Published 25 Mar 2024 in eess.SY and cs.SY

Abstract: The state of charge (SOC) of lithium-ion batteries needs to be accurately estimated for safety and reliability purposes. For battery packs made of a large number of cells, it is not always feasible to design one SOC estimator per cell due to limited computational resources. Instead, only the minimum and the maximum SOC need to be estimated. The challenge is that the cells having minimum and maximum SOC typically change over time. In this context, we present a low-dimensional hybrid estimator of the minimum (maximum) SOC, whose convergence is analytically guaranteed. We consider for this purpose a battery consisting of cells interconnected in series, which we model by electric equivalent circuit models. We then present the hybrid estimator, which runs an observer designed for a single cell at any time instant, selected by a switching-like logic mechanism. We establish a practical exponential stability property for the estimation error on the minimum (maximum) SOC thereby guaranteeing the ability of the hybrid scheme to generate accurate estimates of the minimum (maximum) SOC. The analysis relies on non-smooth hybrid Lyapunov techniques. A numerical illustration is provided to showcase the relevance of the proposed approach.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. M. A. Hannan, M. S. H. Lipu, A. Hussain, and A. Mohamed, “A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations,” Renewable and Sustainable Energy Reviews, vol. 78, pp. 834–854, 2017.
  2. J. K. Barillas, J. Li, C. Guenther, and M. A. Danzer, “A comparative study and validation of state estimation algorithms for Li-ion batteries in battery management systems,” Applied Energy, vol. 155, pp. 455–462, 2015.
  3. S. J. Moura, F. B. Argomedo, R. Klein, A. Mirtabatabaei, and M. Krstic, “Battery state estimation for a single particle model with electrolyte dynamics,” IEEE Transactions on Control Systems Technology, vol. 25, no. 2, pp. 453–468, 2017.
  4. H. J. Dreef, H. P. G. J. Beelen, and M. C. F. Donkers, “LMI-based robust observer design for battery state-of-charge estimation,” in IEEE Conference on Decision and Control, pp. 5716–5721, Miami Beach, USA, 2018.
  5. G. L. Plett, “Efficient battery pack state estimation using bar-delta filtering,” in International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium and Exhibition, Stavenger, Norway, 2009.
  6. Y. Hua, A. Cordoba-Arenas, N. Warner, and G. Rizzoni, “A multi time-scale state-of-charge and state-of-health estimation framework using nonlinear predictive filter for lithium-ion battery pack with passive balance control,” Journal of Power Sources, vol. 280, pp. 293–312, 2015.
  7. K. S. R. Mawonou, A. Eddahech, D. Dumur, E. Godoy, D. Beauvois, and M. Mensler, “Li-ion battery pack SoC estimation for electric vehicles,” in Annual Conference of the IEEE Industrial Electronics Society, pp. 4968–4973, Washington DC, USA, 2018.
  8. X. Liu and Y. He, “State-of-Charge estimation for power Li-ion battery pack using Vmin-EKF,” in International Conference on Software Engineering and Data Mining, pp. 27 – 31, Chengdu, China, 2010.
  9. Z. Zhou, B. Duan, Y. Kang, N. Cui, Y. Shang, and C. Zhang, “A low-complexity state of charge estimation method for series-connected lithium-ion battery pack used in electric vehicles,” Journal of Power Sources, vol. 441, p. 226972, 2019.
  10. D. Zhang, L. D. Couto, P. Gill, S. Benjamin, W. Zeng, and S. J. Moura, “Interval observer for SOC estimation in parallel-connected lithium-ion batteries,” in American Control Conference, pp. 1149–1154, Denver, USA, 2020.
  11. Princeton University Press, 2012.
  12. W. P. M. H. Heemels, P. Bernard, K. J. A. Scheres, R. Postoyan, and R. G. Sanfelice, “Hybrid systems with continuous-time inputs: subtleties in solution concepts and existence results,” in IEEE Conference on Decision and Control, Austin, USA, 2021.
  13. F. H. Clarke, Optimization and Nonsmooth Analysis. SIAM, 1990.
  14. C. Cai, A. R. Teel, and R. Goebel, “Smooth Lyapunov functions for hybrid systems—Part I: Existence is equivalent to robustness,” IEEE Trans. on Automatic Control, vol. 52, no. 7, pp. 1264–1277, 2007.
  15. D. Liberzon, D. Nešić, and A. R. Teel, “Small-gain theorems of LaSalle type for hybrid systems,” in IEEE Conference on Decision and Control, pp. 6825–6830, Maui, Hawaii, USA, 2012.
  16. E. Petri, R. Postoyan, D. Astolfi, D. Nešić, and V. Andrieu, “Hybrid multi-observer for improving estimation performance,” arXiv preprint arXiv:2303.06936, 2024.
  17. A. R. Teel and L. Praly, “On assigning the derivative of a disturbance attenuation control Lyapunov function,” Mathematics of Control, Signals and Systems, vol. 13, 2000.
  18. Pearson Education, Prentice Hall, 2002.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Mira Khalil (2 papers)
  2. Romain Postoyan (31 papers)
  3. Stéphane Raël (2 papers)
  4. Dragan Nešić (25 papers)

Summary

We haven't generated a summary for this paper yet.