Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Real-time Neuron Segmentation for Voltage Imaging (2403.16438v1)

Published 25 Mar 2024 in eess.IV and cs.CV

Abstract: In voltage imaging, where the membrane potentials of individual neurons are recorded at from hundreds to thousand frames per second using fluorescence microscopy, data processing presents a challenge. Even a fraction of a minute of recording with a limited image size yields gigabytes of video data consisting of tens of thousands of frames, which can be time-consuming to process. Moreover, millisecond-level short exposures lead to noisy video frames, obscuring neuron footprints especially in deep-brain samples where noisy signals are buried in background fluorescence. To address this challenge, we propose a fast neuron segmentation method able to detect multiple, potentially overlapping, spiking neurons from noisy video frames, and implement a data processing pipeline incorporating the proposed segmentation method along with GPU-accelerated motion correction. By testing on existing datasets as well as on new datasets we introduce, we show that our pipeline extracts neuron footprints that agree well with human annotation even from cluttered datasets, and demonstrate real-time processing of voltage imaging data on a single desktop computer for the first time.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. T. Knöpfel and C. Song, “Optical voltage imaging in neurons: moving from technology development to practical tool,” Nature Reviews Neuroscience, vol. 20, pp. 719–727, 2019.
  2. R. Homma, B. J. Baker, L. Jin, O. Garaschuk, A. Konnerth, L. B. Cohen, and D. Zecevic, “Wide-field and two-photon imaging of brain activity with voltage- and calcium-sensitive dyes,” Phil. Trans. R. Soc. B, vol. 364, pp. 2453–2467, 2009.
  3. A. S. Abdelfattah, T. Kawashima, A. Singh, O. Novak, H. Liu, Y. Shuai, Y.-C. Huang, L. Campagnola, S. C. Seeman, J. Yu, J. Zheng, J. B. Grimm, R. Patel, J. Friedrich, B. D. Mensh, L. Paninski, J. J. Macklin, G. J. Murphy, K. Podgorski, B.-J. Lin, T.-W. Chen, G. C. Turner, Z. Liu, M. Koyama, K. Svoboda, M. B. Ahrens, L. D. Lavis, and E. R. Schreiter, “Bright and photostable chemigenetic indicators for extended in vivo voltage imaging,” Science, vol. 365, no. 6454, pp. 699–704, Aug. 2019.
  4. K. D. Piatkevich, S. Bensussen, H. Tseng, S. N. Shroff, V. G. Lopez-Huerta, D. Park, E. E. Jung, O. A. Shemesh, C. Straub, H. J. Gritton, M. F. Romano, E. Costa, B. L. Sabatini, Z. Fu, E. S. Boyden, and X. Han, “Population imaging of neural activity in awake behaving mice,” Nature, vol. 574, pp. 413–417, 2019.
  5. Y. Bando, M. Wenzel, and R. Yuste, “Simultaneous two-photon imaging of action potentials and subthreshold inputs in vivo,” Nature Communications, vol. 12, p. 2021, 7229.
  6. J. Platisa, X. Ye, A. M. Ahrens, C. Liu, I. A. Chen, I. G. Davison, L. Tian, V. A. Pieribone, and J. L. Chen, “High-speed low-light in vivo two-photon voltage imaging of large neuronal populations,” Nature Methods, vol. 20, pp. 1095–1103, 2023.
  7. M. E. Xie, Y. Adam, L. Z. Fan, U. L. Böhm, I. Kinsella, D. Zhou, M. Rozsa, A. Singh, K. Svoboda, L. Paninski, and A. E. Cohen, “High-fidelity estimates of spikes and subthreshold waveforms from 1-photon voltage imaging in vivo,” Cell Reports, vol. 35, no. 1, p. 108954, 2021.
  8. C. Cai, J. Friedrich, A. Singh, M. H. Eybposh, E. A. Pnevmatikakis, K. Podgorski, and A. Giovannucci, “VolPy: Automated and scalable analysis pipelines for voltage imaging datasets,” PLoS Comput Biol, vol. 17, no. 4, p. e1008806, 2021.
  9. V. Villette, M. Chavarha, I. K. Dimov, J. Bradley, L. Pradhan, B. Mathieu, S. W. Evans, S. Chamberland, D. Shi, R. Yang, B. B. Kim, A. Ayon, A. Jalil, F. St-Pierre, M. J. Schnitzer, G. Bi, K. Toth, J. Ding, S. Dieudonne, and M. Z. Lin, “Ultrafast two-photon imaging of a high-gain voltage indicator in awake behaving mice,” Cell, vol. 179, no. 7, pp. 1590–1608.e23, 2019.
  10. Y. Adam, J. J. Kim, S. Lou, Y. Zhao, M. E. Xie, D. Brinks, H. Wu, M. A. Mostajo-Radji, S. Kheifets, V. Parot, S. Chettih, K. J. Williams, B. Gmeiner, S. L. Farhi, L. Madisen, E. K. Buchanan, I. Kinsella, D. Zhou, L. Paninski, C. D. Harvey, H. Zeng, P. Arlotta, R. E. Campbell, and A. E. Cohen, “Voltage imaging and optogenetics reveal behaviour-dependent changes in hippocampal dynamics,” Nature, vol. 569, pp. 413–417, 2019.
  11. S. Xiao, E. Lowet, H. J. Gritton, P. Fabris, Y. Wang, J. Sherman, R. A. Mount, H. Tseng, H.-Y. Man, C. Straub, K. D. Piatkevich, E. S. Boyden, J. Mertz, and X. Han, “Large-scale voltage imaging in behaving mice using targeted illumination,” iScience, vol. 24, no. 11, p. 103263, 2021.
  12. O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention (MICCAI), ser. LNCS, vol. 9351.   Springer, 2015, pp. 234–241.
  13. J. P. Lewis, “Fast template matching,” in Vision Interface, Quebec City, Canada, May 1995, pp. 120–123.
  14. K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” in the IEEE International Conference on Computer Vision (ICCV), 2017, pp. 2961–2969.
  15. C. Cai, J. Friedrich, A. Singh, M. H. Eybposh, E. A. Pnevmatikakis, M. E. Xie, A. S. Abdelfattah, Y. Adam, E. R. Schreiter, A. E. Cohen, K. Podgorski, and A. Giovannucci, “VolPy: automated and scalable analysis pipelines for voltage imaging datasets,” Mar. 2021. [Online]. Available: https://doi.org/10.5281/zenodo.4515768
  16. A. Giovannucci, J. Friedrich, P. Gunn, J. Kalfon, B. L. Brown, S. A. Koay, J. Taxidis, F. Najafi, J. L. Gauthier, P. Zhou, B. S. Khakh, D. W. Tank, D. B. Chklovskii, and E. A. Pnevmatikakis, “CaImAn an open source tool for scalable calcium imaging data analysis,” eLife, vol. 8, p. e38173, 2019.

Summary

We haven't generated a summary for this paper yet.