Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Regular categories, oligomorphic monoids, and tensor categories (2403.16267v1)

Published 24 Mar 2024 in math.RT and math.CT

Abstract: Knop constructed a tensor category associated to a finitely-powered regular category equipped with a degree function. In recent work with Harman, we constructed a tensor category associated to an oligomorphic group equipped with a measure. In this paper, we explain how Knop's approach fits into our theory. The first, and most important, step describes finitely-powered regular categories in terms of oligomorphic monoids; this may be of independent interest. We go on to examine some aspects of this construction when the regular category one starts with is the category of $G$-sets for an oligomorphic group $G$, which yields some interesting examples.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. P. Deligne, J. Milne. Tannakian Categories. In “Hodge cycles, motives, and Shimura varieties,” Lecture Notes in Math., vol. 900, Springer–Verlag, 1982. DOI:10.1007/978-3-540-38955-2_4 Available at: http://www.jmilne.org/math/xnotes/tc.html
  2. Nate Harman, Andrew Snowden. Oligomorphic groups and tensor categories. arXiv:2204.04526
  3. Nate Harman, Andrew Snowden. Pre-Galois categories and Fraïssé’s theorem. arXiv:2301.13784
  4. Nate Harman, Andrew Snowden. Discrete pre-Tannakian categories. arXiv:2304.05375
  5. Friedrich Knop. Tensor envelopes of regular categories. Adv. Math. 214 (2007), pp. 571–617. DOI:10.1016/j.aim.2007.03.001 arXiv:math/0610552
  6. Sophie Kriz. Quantum Delannoy categories. Available at: https://krizsophie.github.io/
  7. Michael Megrelishvili, Menachem Shlossberg. Non-archimedean topological monoids. arXiv:2311.09187
  8. Andrew Snowden. Some fast-growing tensor categories. arXiv:2305.18230
  9. Andrew Snowden. On the representation theory of the symmetry group of the Cantor set. arXiv:2308.06648
  10. Andrew Snowden, Peter Webb. The biset category: a tensorial perspective. In preparation.
  11. Andrew Snowden, Peter Webb. The biset category: an oligomorphic perspective. In preparation.
  12. J. Wilson. The algebraic structure of ω𝜔\omegaitalic_ω-categorical groups. In “Groups—St. Andrews 1981,” eds. C. M. Campbell, E. F. Robertson, London Math. Soc. Lecture Notes 71 (1981), Cambridge, pp. 345–358. DOI:10.1017/CBO9780511661884

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com