Testing disformal non-circular deformation of Kerr black holes with LISA (2403.16192v2)
Abstract: There is strong observational evidence that almost every large galaxy has a supermassive black hole at its center. It is of fundamental importance to know whether such black holes are described by the standard Kerr solution in General Relativity (GR) or by another black hole solution. An interesting alternative is the so-called disformal Kerr black holes which exist within the framework of degenerate higher-order scalar-tensor (DHOST) theories of gravity. The departure from the standard Kerr black hole spacetime is parametrized by a parameter $D$, called $\textit{disformal parameter}$. In the present work, we discuss the capability of LISA to detect the disformal parameter. For this purpose, we study Extreme Mass Ratio Inspirals (EMRI's) around disformal Kerr black holes within the framework of the quadrupole hybrid formalism. Even when the disformal parameter is very small, its effect on the globally accumulated phase of the gravitational waveform of an EMRI can be significant due to the large number of cycles in the LISA band made by the small compact object. We show that LISA will in principle be able to detect and measure extremely small values of the disformal parameter which in turn, can be seen as an assessment of LISA's ability to detect very small deviations from the Kerr geometry.
- Z. Carson and K. Yagi, “Testing General Relativity with Gravitational Waves,” arXiv:2011.02938 [gr-qc].
- L. G. Collodel, D. D. Doneva, and S. S. Yazadjiev, “Equatorial extreme-mass-ratio inspirals in Kerr black holes with scalar hair spacetimes,” Phys. Rev. D 105 (2022) no. 4, 044036, arXiv:2108.11658 [gr-qc].
- J. F. M. Delgado, C. A. R. Herdeiro, and E. Radu, “EMRIs around j = 1 black holes with synchronised hair,” JCAP 10 (2023) 029, arXiv:2305.02333 [gr-qc].
- R. Brito and S. Shah, “Extreme mass-ratio inspirals into black holes surrounded by scalar clouds,” Phys. Rev. D 108 (2023) no. 8, 084019, arXiv:2307.16093 [gr-qc].
- A. Maselli, N. Franchini, L. Gualtieri, T. P. Sotiriou, S. Barsanti, and P. Pani, “Detecting fundamental fields with LISA observations of gravitational waves from extreme mass-ratio inspirals,” Nature Astron. 6 (2022) no. 4, 464–470, arXiv:2106.11325 [gr-qc].
- K. Destounis, A. G. Suvorov, and K. D. Kokkotas, “Gravitational-wave glitches in chaotic extreme-mass-ratio inspirals,” Phys. Rev. Lett. 126 (2021) no. 14, 141102, arXiv:2103.05643 [gr-qc].
- C. F. Sopuerta and N. Yunes, “Extreme and Intermediate-Mass Ratio Inspirals in Dynamical Chern-Simons Modified Gravity,” Phys. Rev. D 80 (2009) 064006, arXiv:0904.4501 [gr-qc].
- P. Pani, V. Cardoso, and L. Gualtieri, “Gravitational waves from extreme mass-ratio inspirals in Dynamical Chern-Simons gravity,” Phys. Rev. D 83 (2011) 104048, arXiv:1104.1183 [gr-qc].
- P. Canizares, J. R. Gair, and C. F. Sopuerta, “Testing Chern-Simons Modified Gravity with Gravitational-Wave Detections of Extreme-Mass-Ratio Binaries,” Phys. Rev. D 86 (2012) 044010, arXiv:1205.1253 [gr-qc].
- S. H. Völkel, E. Barausse, N. Franchini, and A. E. Broderick, “EHT tests of the strong-field regime of general relativity,” Class. Quant. Grav. 38 (2021) no. 21, 21LT01, arXiv:2011.06812 [gr-qc].
- EHT Collaboration, P. K. et al., “Constraints on black-hole charges with the 2017 eht observations of m87*,” Phys. Rev. D 103 (2021) 104047.
- C. A. R. Herdeiro and E. Radu, “Asymptotically flat black holes with scalar hair: a review,” Int. J. Mod. Phys. D 24 (2015) no. 09, 1542014, arXiv:1504.08209 [gr-qc].
- E. Babichev, C. Charmousis, and N. Lecoeur, “Exact black hole solutions in higher-order scalar-tensor theories,” arXiv:2309.12229 [gr-qc].
- L. K. Wong, C. A. R. Herdeiro, and E. Radu, “Constraining spontaneous black hole scalarization in scalar-tensor-Gauss-Bonnet theories with current gravitational-wave data,” Phys. Rev. D 106 (2022) no. 2, 024008, arXiv:2204.09038 [gr-qc].
- Z. Lyu, N. Jiang, and K. Yagi, “Constraints on Einstein-dilation-Gauss-Bonnet gravity from black hole-neutron star gravitational wave events,” Phys. Rev. D 105 (2022) no. 6, 064001, arXiv:2201.02543 [gr-qc]. [Erratum: Phys.Rev.D 106, 069901 (2022), Erratum: Phys.Rev.D 106, 069901 (2022)].
- T. Anson, E. Babichev, C. Charmousis, and M. Hassaine, “Disforming the Kerr metric,” JHEP 01 (2021) 018, arXiv:2006.06461 [gr-qc].
- J. Ben Achour, H. Liu, H. Motohashi, S. Mukohyama, and K. Noui, “On rotating black holes in DHOST theories,” JCAP 11 (2020) 001, arXiv:2006.07245 [gr-qc].
- C. Charmousis, M. Crisostomi, R. Gregory, and N. Stergioulas, “Rotating Black Holes in Higher Order Gravity,” Phys. Rev. D 100 (2019) no. 8, 084020, arXiv:1903.05519 [hep-th].
- C. Charmousis, M. Crisostomi, D. Langlois, and K. Noui, “Perturbations of a rotating black hole in DHOST theories,” Class. Quant. Grav. 36 (2019) no. 23, 235008, arXiv:1907.02924 [gr-qc].
- E. Babichev, C. Charmousis, G. Esposito-Farèse, and A. Lehébel, “Hamiltonian unboundedness vs stability with an application to Horndeski theory,” Phys. Rev. D 98 (2018) no. 10, 104050, arXiv:1803.11444 [gr-qc].
- C. de Rham and J. Zhang, “Perturbations of stealth black holes in degenerate higher-order scalar-tensor theories,” Phys. Rev. D 100 (2019) no. 12, 124023, arXiv:1907.00699 [hep-th].
- T. Johannsen, “Regular Black Hole Metric with Three Constants of Motion,” Phys. Rev. D 88 (2013) no. 4, 044002, arXiv:1501.02809 [gr-qc].
- D. Heumann and D. Psaltis, “Identifying the event horizons of parametrically deformed black-hole metrics,” Phys. Rev. D 107 (2023) no. 4, 044015, arXiv:2205.12994 [gr-qc].
- T. Anson, E. Babichev, and C. Charmousis, “Deformed black hole in Sagittarius A,” Phys. Rev. D 103 (2021) no. 12, 124035, arXiv:2103.05490 [gr-qc].
- K. Glampedakis, S. A. Hughes, and D. Kennefick, “Approximating the inspiral of test bodies into Kerr black holes,” Phys. Rev. D 66 (2002) 064005, arXiv:gr-qc/0205033.
- K. Glampedakis and S. Babak, “Mapping spacetimes with LISA: Inspiral of a test-body in a ‘quasi-Kerr’ field,” Class. Quant. Grav. 23 (2006) 4167–4188, arXiv:gr-qc/0510057.
- A. J. K. Chua, C. J. Moore, and J. R. Gair, “Augmented kludge waveforms for detecting extreme-mass-ratio inspirals,” Phys. Rev. D 96 (2017) no. 4, 044005, arXiv:1705.04259 [gr-qc].
- K. S. Thorne, “Multipole Expansions of Gravitational Radiation,” Rev. Mod. Phys. 52 (1980) 299–339.
- M. Maggiore, Gravitational Waves. Vol. 1: Theory and Experiments. Oxford University Press, 2007.
- B. Bonga, H. Yang, and S. A. Hughes, “Tidal resonance in extreme mass-ratio inspirals,” Phys. Rev. Lett. 123 (2019) no. 10, 101103, arXiv:1905.00030 [gr-qc].
- G. Fragione and A. Loeb, “An upper limit on the spin of SgrA*{}^{*}start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT based on stellar orbits in its vicinity,” Astrophys. J. Lett. 901 (2020) no. 2, L32, arXiv:2008.11734 [astro-ph.GA].
- K. Glampedakis and G. Pappas, “Modification of photon trapping orbits as a diagnostic of non-Kerr spacetimes,” Phys. Rev. D 99 (2019) no. 12, 124041, arXiv:1806.09333 [gr-qc].
- C.-Y. Chen, H.-W. Chiang, and A. Patel, “Resonant orbits of rotating black holes beyond circularity: Discontinuity along a parameter shift,” Phys. Rev. D 108 (2023) no. 6, 064016, arXiv:2306.08356 [gr-qc].