Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-Driven Sliding Mode Control for Partially Unknown Nonlinear Systems (2403.16136v1)

Published 24 Mar 2024 in eess.SY and cs.SY

Abstract: This paper introduces a new design method for data-driven control of nonlinear systems with partially unknown dynamics and unknown bounded disturbance. Since it is not possible to achieve exact nonlinearity cancellation in the presence of unknown disturbance, this paper adapts the idea of sliding mode control (SMC) to ensure system stability and robustness without assuming that the nonlinearity goes to zero faster than the state as in the existing methods. The SMC consists of a data-dependent robust controller ensuring the system state trajectory reach and remain on the sliding surface and a nominal controller solved from a data-dependent semidefinite program (SDP) ensuring robust stability of the state trajectory on the sliding surface. Numerical simulation results demonstrate effectiveness of the proposed data-driven SMC and its superior in terms of robust stability over the existing data-driven control that also uses approximate nonlinearity cancellation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. C. De Persis and P. Tesi, “Learning controllers for nonlinear systems from data,” Annu. Rev. Control, p. 100915, 2023.
  2. F. Dörfler, J. Coulson, and I. Markovsky, “Bridging direct and indirect data-driven control formulations via regularizations and relaxations,” IEEE Trans. Autom. Control., vol. 68, no. 2, pp. 883–897, 2022.
  3. A. Astolfi, “Nonlinear adaptive control,” in Encyclopedia of Systems and Control.   Springer, 2021, pp. 1467–1472.
  4. M. C. Campi and S. M. Savaresi, “Direct nonlinear control design: The virtual reference feedback tuning (VRFT) approach,” IEEE Trans. Autom. Control., vol. 51, no. 1, pp. 14–27, 2006.
  5. F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive dynamic programming for feedback control,” IEEE Circuits Syst. Mag., vol. 9, no. 3, pp. 32–50, 2009.
  6. C. De Persis and P. Tesi, “Formulas for data-driven control: Stabilization, optimality, and robustness,” IEEE Trans. Autom. Control., vol. 65, no. 3, pp. 909–924, 2020.
  7. A. S. Bazanella, L. Campestrini, and D. Eckhard, “An introduction to data-driven control, from kernels to behaviors,” in Proc. IEEE Conf. Decis. Control.   IEEE, 2022, pp. 1079–1084.
  8. W. Tang and P. Daoutidis, “Data-driven control: Overview and perspectives,” in Proc. Am. Control Conf.   IEEE, 2022, pp. 1048–1064.
  9. T. Martin, T. B. Schön, and F. Allgöwer, “Guarantees for data-driven control of nonlinear systems using semidefinite programming: A survey,” Annu. Rev. Control, p. 100911, 2023.
  10. M. Guo, C. De Persis, and P. Tesi, “Data-driven stabilization of nonlinear polynomial systems with noisy data,” IEEE Trans. Autom. Control., vol. 67, no. 8, pp. 4210–4217, 2022.
  11. T. Martin and F. Allgöwer, “Data-driven system analysis of nonlinear systems using polynomial approximation,” IEEE Trans. Autom. Control., DOI: 10.1109/TAC.2023.3321212, 2023.
  12. C. De Persis, M. Rotulo, and P. Tesi, “Learning controllers from data via approximate nonlinearity cancellation,” IEEE Trans. Automat. Contr., vol. 68, no. 10, pp. 6082–6097, 2023.
  13. M. Guo, C. De Persis, and P. Tesi, “Data-driven control of input-affine systems via approximate nonlinearity cancellation,” IFAC-PapersOnLine, vol. 56, no. 2, pp. 1357–1362, 2023.
  14. ——, “Learning control of second-order systems via nonlinearity cancellation,” in Proc. IEEE Conf. Decis. Control.   IEEE, 2023, pp. 3055–3060.
  15. N. Ebrahimi, S. Ozgoli, and A. Ramezani, “Data-driven sliding mode control: a new approach based on optimization,” Int. J. Control, vol. 93, no. 8, pp. 1980–1988, 2020.
  16. M. Hou and Y. Wang, “Data-driven adaptive terminal sliding mode control with prescribed performance,” Asian J. Control, vol. 23, no. 2, pp. 774–785, 2021.
  17. M. L. Corradini, “A robust sliding-mode based data-driven model-free adaptive controller,” IEEE Control Syst. Lett., vol. 6, pp. 421–427, 2021.
  18. S. Sarpturk, Y. Istefanopulos, and O. Kaynak, “On the stability of discrete-time sliding mode control systems,” IEEE Trans. Autom. Control., vol. 32, no. 10, pp. 930–932, 1987.
  19. C. Scherer and S. Weiland, “Linear matrix inequalities in control,” Lecture Notes, Dutch Institute for Systems and Control, Delft, The Netherlands, vol. 3, no. 2, 2000.
  20. J. Löfberg, “YALMIP: A toolbox for modeling and optimization in MATLAB,” in Proc. CACSD, vol. 3, 2004.
  21. Mosek ApS, “The MOSEK optimization software.” [Online]. Available: https://www.mosek.com

Summary

We haven't generated a summary for this paper yet.