Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Digital Twin Assisted Intelligent Network Management for Vehicular Applications (2403.16021v1)

Published 24 Mar 2024 in cs.NI

Abstract: The emerging data-driven methods based on AI have paved the way for intelligent, flexible, and adaptive network management in vehicular applications. To enhance network management towards network automation, this article presents a digital twin (DT) assisted two-tier learning framework, which facilitates the automated life-cycle management of machine learning based intelligent network management functions (INMFs). Specifically, at a high tier, meta learning is employed to capture different levels of general features for the INMFs under nonstationary network conditions. At a low tier, individual learning models are customized for local networks based on fast model adaptation. Hierarchical DTs are deployed at the edge and cloud servers to assist the two-tier learning process, through closed-loop interactions with the physical network domain. Finally, a case study demonstrates the fast and accurate model adaptation ability of meta learning in comparison with benchmark schemes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. J. Feng and J. Zhao, “Resource allocation for augmented reality empowered vehicular edge metaverse,” IEEE Trans. Commun., 2023, to appear, doi: 10.1109/TCOMM.2023.3314892.
  2. W. Wu, C. Zhou, M. Li, H. Wu, H. Zhou, N. Zhang, X. Shen, and W. Zhuang, “AI-native network slicing for 6G networks,” IEEE Wirel. Commun., vol. 29, no. 1, pp. 96–103, 2022.
  3. X. Shen, J. Gao, W. Wu, M. Li, C. Zhou, and W. Zhuang, “Holistic network virtualization and pervasive network intelligence for 6G,” IEEE Commun. Surv. Tutor., vol. 24, no. 1, pp. 1–30, 2022.
  4. E. Coronado, R. Behravesh, T. Subramanya, A. Fernández-Fernández, S. Siddiqui, X. Costa-Pérez, and R. Riggio, “Zero touch management: A survey of network automation solutions for 5G and 6G networks,” IEEE Commun. Surv. Tutor., vol. 24, no. 4, pp. 2535–2578, 2022.
  5. C. Benzaid and T. Taleb, “AI-driven zero touch network and service management in 5G and beyond: Challenges and research directions,” IEEE Network, vol. 34, no. 2, pp. 186–194, 2020.
  6. Y. Yuan, L. Jiao, K. Zhu, X. Lin, and L. Zhang, “AI in 5G: The case of online distributed transfer learning over edge networks,” in Proc. IEEE INFOCOM, 2022, pp. 810–819.
  7. 3GPP, “Study of enablers for network automation for the 5G system (5GS); phase 3,” 3rd Generation Partnership Project (3GPP), Technical Report (TR) 23.700-81, 2022, version 18.0.0.
  8. O. T. Ajayi, X. Cao, H. Shan, and Y. Cheng, “Self-renewal machine learning approach for fast wireless network optimization,” in 2023 IEEE 20th International Conf. Mobile Ad Hoc and Smart Systems (MASS), 2023, pp. 134–142.
  9. C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation of deep networks,” in International Conf. Machine Learning (ICML), 2017, pp. 1126–1135.
  10. Y. Wang, M. Chen, Z. Yang, W. Saad, T. Luo, S. Cui, and H. V. Poor, “Meta-reinforcement learning for reliable communication in THz/VLC wireless VR networks,” IEEE Trans. Wireless Commun., vol. 21, no. 9, pp. 7778 – 7793, 2022.
  11. G. Cai, B. Fan, Y. Dong, T. Li, Y. Wu, and Y. Zhang, “Task-efficiency oriented V2X communications: Digital twin meets mobile edge computing,” IEEE Wirel. Commun., 2023, to appear, doi: 10.1109/MWC.012.2200465.
  12. Q. Guo, F. Tang, T. K. Rodrigues, and N. Kato, “Five disruptive technologies in 6G to support digital twin networks,” IEEE Wirel. Commun., vol. 31, no. 1, pp. 149–155, 2024.
  13. A. Nichol, J. Achiam, and J. Schulman, “On first-order meta-learning algorithms,” arXiv preprint arXiv:1803.02999, 2018.
  14. K. Qu, W. Zhuang, X. Shen, X. Li, and J. Rao, “Dynamic resource scaling for VNF over nonstationary traffic: A learning approach,” IEEE Trans. Cogn. Commun. Netw., vol. 7, no. 2, pp. 648–662, 2021.
  15. K. Qu, W. Zhuang, Q. Ye, W. Wu, and X. Shen, “Model-assisted learning for adaptive cooperative perception of connected autonomous vehicles,” IEEE Trans. Wireless Commun., 2024, to appear, doi: 10.1109/TWC.2024.3354507.
Citations (1)

Summary

We haven't generated a summary for this paper yet.