Primordial black holes and secondary gravitational waves from the inflation potential with a tiny Lorentz function bump (2403.15979v2)
Abstract: This paper explores the generation of primordial black holes (PBHs) and scalar-induced gravitational waves (SIGWs) from the inflation potential with a tiny Lorentz function bump. We choose the Starobinsky model as basic potential, which satisfies the condition of observational constraints of the CMB at a large scale. We find that the tiny Lorentz function bump can enhance the primordial curvature power spectrum to $\mathcal{O}(10{-2})$ at a small scale, leading to the formation of PBHs with sufficient abundance. Furthermore, we discover that the abundance of PBHs with mass $10{-12}M_\odot$ is approximately $1$, which can make up almost all dark matter. In addition, the SIGWs generated by our models can be tested by the Square Kilometre Array (SKA), Pulsar Timing Arrays (PTA), TianQin, Taiji, Laser Interferometer Space Antenna (LISA), and DECIGO. It should be emphasized that, compared with the tiny Gaussian bump case, the Lorentz function bump case can easily produce a sufficient abundance of PBHs with a wider mass range, and accompanying a broader frequency range of SIGWs, which predicts the advantage of the Lorentz function bump for basic potential with big e-folding number $N$ around $55\sim60$.
- B. P. Abbott et al. (LIGO Scientific, Virgo), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016), arXiv:1602.03837 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs, Phys. Rev. X 9, 031040 (2019), arXiv:1811.12907 [astro-ph.HE] .
- G. Bertone and D. Hooper, History of dark matter, Rev. Mod. Phys. 90, 045002 (2018), arXiv:1605.04909 [astro-ph.CO] .
- S. Clesse and J. García-Bellido, Massive Primordial Black Holes from Hybrid Inflation as Dark Matter and the seeds of Galaxies, Phys. Rev. D 92, 023524 (2015), arXiv:1501.07565 [astro-ph.CO] .
- J. García-Bellido, Massive Primordial Black Holes as Dark Matter and their detection with Gravitational Waves, J. Phys. Conf. Ser. 840, 012032 (2017), arXiv:1702.08275 [astro-ph.CO] .
- E. D. Kovetz, Probing Primordial-Black-Hole Dark Matter with Gravitational Waves, Phys. Rev. Lett. 119, 131301 (2017), arXiv:1705.09182 [astro-ph.CO] .
- B. Carr and F. Kuhnel, Primordial Black Holes as Dark Matter: Recent Developments, Ann. Rev. Nucl. Part. Sci. 70, 355 (2020), arXiv:2006.02838 [astro-ph.CO] .
- Y. Ali-Haïmoud and M. Kamionkowski, Cosmic microwave background limits on accreting primordial black holes, Phys. Rev. D 95, 043534 (2017), arXiv:1612.05644 [astro-ph.CO] .
- H. Niikura et al., Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations, Nature Astron. 3, 524 (2019a), arXiv:1701.02151 [astro-ph.CO] .
- P. Tisserand et al. (EROS-2), Limits on the Macho Content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds, Astron. Astrophys. 469, 387 (2007), arXiv:astro-ph/0607207 .
- V. Vaskonen and H. Veermäe, Lower bound on the primordial black hole merger rate, Phys. Rev. D 101, 043015 (2020).
- A. M. Green and B. J. Kavanagh, Primordial Black Holes as a dark matter candidate, J. Phys. G 48, 043001 (2021), arXiv:2007.10722 [astro-ph.CO] .
- S. Hawking, Gravitationally collapsed objects of very low mass, Mon. Not. Roy. Astron. Soc. 152, 75 (1971).
- J. Garcia-Bellido and E. Ruiz Morales, Primordial black holes from single field models of inflation, Phys. Dark Univ. 18, 47 (2017), arXiv:1702.03901 [astro-ph.CO] .
- H. Di and Y. Gong, Primordial black holes and second order gravitational waves from ultra-slow-roll inflation, JCAP 07, 007 (2018), arXiv:1707.09578 [astro-ph.CO] .
- J. Garriga and A. Vilenkin, Black holes from nucleating strings, Phys. Rev. D 47, 3265 (1993), arXiv:hep-ph/9208212 .
- A. Polnarev and R. Zembowicz, Formation of Primordial Black Holes by Cosmic Strings, Phys. Rev. D 43, 1106 (1991).
- Y. N. Eroshenko, Spin of primordial black holes in the model with collapsing domain walls, JCAP 12, 041 (2021), arXiv:2111.03403 [astro-ph.CO] .
- R. Saito and J. Yokoyama, Gravitational wave background as a probe of the primordial black hole abundance, Phys. Rev. Lett. 102, 161101 (2009), [Erratum: Phys.Rev.Lett. 107, 069901 (2011)], arXiv:0812.4339 [astro-ph] .
- R. Saito and J. Yokoyama, Gravitational-Wave Constraints on the Abundance of Primordial Black Holes, Prog. Theor. Phys. 123, 867 (2010), [Erratum: Prog.Theor.Phys. 126, 351–352 (2011)], arXiv:0912.5317 [astro-ph.CO] .
- Z. Yi, Primordial black holes and scalar-induced gravitational waves from the generalized Brans-Dicke theory, JCAP 03, 048 (2023), arXiv:2206.01039 [gr-qc] .
- P. Amaro-Seoane et al. (LISA), Laser Interferometer Space Antenna, (2017), arXiv:1702.00786 [astro-ph.IM] .
- W.-R. Hu and Y.-L. Wu, The Taiji Program in Space for gravitational wave physics and the nature of gravity, Natl. Sci. Rev. 4, 685 (2017).
- J. Luo et al. (TianQin), TianQin: a space-borne gravitational wave detector, Class. Quant. Grav. 33, 035010 (2016), arXiv:1512.02076 [astro-ph.IM] .
- S. Kawamura et al., The Japanese space gravitational wave antenna DECIGO, Class. Quant. Grav. 23, S125 (2006).
- L. Anguelova, On Primordial Black Holes from Rapid Turns in Two-field Models, JCAP 06, 004 (2021), arXiv:2012.03705 [hep-th] .
- S. S. Mishra and V. Sahni, Primordial Black Holes from a tiny bump/dip in the Inflaton potential, JCAP 04, 007 (2020), arXiv:1911.00057 [gr-qc] .
- C. Fu and C. Chen, Sudden braking and turning with a two-field potential bump: primordial black hole formation, JCAP 05, 005 (2023), arXiv:2211.11387 [astro-ph.CO] .
- A. A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. B 91, 99 (1980).
- V. F. Mukhanov, Gravitational Instability of the Universe Filled with a Scalar Field, JETP Lett. 41, 493 (1985).
- M. Sasaki, Large Scale Quantum Fluctuations in the Inflationary Universe, Prog. Theor. Phys. 76, 1036 (1986).
- Y. Akrami et al. (Planck), Planck 2018 results. X. Constraints on inflation, Astron. Astrophys. 641, A10 (2020), arXiv:1807.06211 [astro-ph.CO] .
- K. Inomata and T. Nakama, Gravitational waves induced by scalar perturbations as probes of the small-scale primordial spectrum, Phys. Rev. D 99, 043511 (2019), arXiv:1812.00674 [astro-ph.CO] .
- W. H. Press and P. Schechter, Formation of galaxies and clusters of galaxies by selfsimilar gravitational condensation, Astrophys. J. 187, 425 (1974).
- B. J. Carr, The Primordial black hole mass spectrum, Astrophys. J. 201, 1 (1975).
- N. Aghanim et al. (Planck), Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
- J. Scholtz and J. Unwin, What if Planet 9 is a Primordial Black Hole?, Phys. Rev. Lett. 125, 051103 (2020), arXiv:1909.11090 [hep-ph] .
- K. Kohri and T. Terada, Semianalytic calculation of gravitational wave spectrum nonlinearly induced from primordial curvature perturbations, Phys. Rev. D 97, 123532 (2018), arXiv:1804.08577 [gr-qc] .
- F. Zhang, Primordial black holes and scalar induced gravitational waves from the E model with a Gauss-Bonnet term, Phys. Rev. D 105, 063539 (2022), arXiv:2112.10516 [gr-qc] .
- G. Hobbs et al., The international pulsar timing array project: using pulsars as a gravitational wave detector, Class. Quant. Grav. 27, 084013 (2010), arXiv:0911.5206 [astro-ph.SR] .
- M. A. McLaughlin, The North American Nanohertz Observatory for Gravitational Waves, Class. Quant. Grav. 30, 224008 (2013), arXiv:1310.0758 [astro-ph.IM] .
- G. Hobbs, The Parkes Pulsar Timing Array, Class. Quant. Grav. 30, 224007 (2013), arXiv:1307.2629 [astro-ph.IM] .
- R. D. Ferdman et al., The European Pulsar Timing Array: current efforts and a LEAP toward the future, Class. Quant. Grav. 27, 084014 (2010), arXiv:1003.3405 [astro-ph.HE] .
- L. Lentati et al. (EPTA), European Pulsar Timing Array Limits On An Isotropic Stochastic Gravitational-Wave Background, Mon. Not. Roy. Astron. Soc. 453, 2576 (2015), arXiv:1504.03692 [astro-ph.CO] .
- R. M. Shannon et al., Gravitational waves from binary supermassive black holes missing in pulsar observations, Science 349, 1522 (2015), arXiv:1509.07320 [astro-ph.CO] .
- Z. Arzoumanian et al. (NANOGrav), The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background, Astrophys. J. Lett. 905, L34 (2020), arXiv:2009.04496 [astro-ph.HE] .
- T. Matsubara and M. Sasaki, Non-Gaussianity effects on the primordial black hole abundance for sharply-peaked primordial spectrum, JCAP 10, 094 (2022), arXiv:2208.02941 [astro-ph.CO] .