Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model, Analyze, and Comprehend User Interactions within a Social Media Platform (2403.15937v2)

Published 23 Mar 2024 in cs.SI and cs.IR

Abstract: In this study, we propose a novel graph-based approach to model, analyze and comprehend user interactions within a social media platform based on post-comment relationship. We construct a user interaction graph from social media data and analyze it to gain insights into community dynamics, user behavior, and content preferences. Our investigation reveals that while 56.05% of the active users are strongly connected within the community, only 0.8% of them significantly contribute to its dynamics. Moreover, we observe temporal variations in community activity, with certain periods experiencing heightened engagement. Additionally, our findings highlight a correlation between user activity and popularity showing that more active users are generally more popular. Alongside these, a preference for positive and informative content is also observed where 82.41% users preferred positive and informative content. Overall, our study provides a comprehensive framework for understanding and managing online communities, leveraging graph-based techniques to gain valuable insights into user behavior and community dynamics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. E. E. H. E. E. Hollenbaugh, “Self-presentation in social media: Review and research opportunities,” Review of communication research, vol. 9, 2021.
  2. M. Garg, “Mental health analysis in social media posts: A survey,” Archives of Computational Methods in Engineering, vol. 30, no. 3, pp. 1819–1842, 2023.
  3. A. M. A. Ausat, “The role of social media in shaping public opinion and its influence on economic decisions,” Technology and Society Perspectives (TACIT), vol. 1, no. 1, pp. 35–44, 2023.
  4. M. R. Ohara, “The role of social media in educational communication management,” Journal of Contemporary Administration and Management (ADMAN), vol. 1, no. 2, pp. 70–76, 2023.
  5. N. Proferes, N. Jones, S. Gilbert, C. Fiesler, and M. Zimmer, “Studying reddit: A systematic overview of disciplines, approaches, methods, and ethics,” Social Media+ Society, vol. 7, no. 2, p. 20563051211019004, 2021.
  6. L. Madio and M. Quinn, “Content moderation and advertising in social media platforms,” Available at SSRN 3551103, 2023.
  7. M. Singhal, C. Ling, P. Paudel, P. Thota, N. Kumarswamy, G. Stringhini, and S. Nilizadeh, “Sok: Content moderation in social media, from guidelines to enforcement, and research to practice,” in 2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P).   IEEE, 2023, pp. 868–895.
  8. Q. Cao, H. Shen, J. Gao, B. Wei, and X. Cheng, “Popularity prediction on social platforms with coupled graph neural networks,” in Proceedings of the 13th international conference on web search and data mining, 2020, pp. 70–78.
  9. S. Carta, A. S. Podda, D. R. Recupero, R. Saia, and G. Usai, “Popularity prediction of instagram posts,” Information, vol. 11, no. 9, p. 453, 2020.
  10. K. Chakraborty, S. Bhattacharyya, and R. Bag, “A survey of sentiment analysis from social media data,” IEEE Transactions on Computational Social Systems, vol. 7, no. 2, pp. 450–464, 2020.
  11. N. K. Singh, D. S. Tomar, and A. K. Sangaiah, “Sentiment analysis: a review and comparative analysis over social media,” Journal of Ambient Intelligence and Humanized Computing, vol. 11, no. 1, pp. 97–117, 2020.
  12. E. Arrigo, C. Liberati, and P. Mariani, “Social media data and users’ preferences: A statistical analysis to support marketing communication,” Big Data Research, vol. 24, p. 100189, 2021.
  13. ——, “Social media data and users’ preferences: A statistical analysis to support marketing communication,” Big Data Research, vol. 24, p. 100189, 2021.
  14. X. Dong and Y. Lian, “A review of social media-based public opinion analyses: Challenges and recommendations,” Technology in Society, vol. 67, p. 101724, 2021.
  15. J. Kim, “Predicting the popularity of reddit posts with ai,” arXiv preprint arXiv:2106.07380, 2021.
  16. M. Glenski and T. Weninger, “Predicting user-interactions on reddit,” in Proceedings of the 2017 IEEE/ACM international conference on advances in social networks analysis and mining 2017, 2017, pp. 609–612.
  17. K. Barnes, T. Riesenmy, M. D. Trinh, E. Lleshi, N. Balogh, and R. Molontay, “Dank or not? analyzing and predicting the popularity of memes on reddit,” Applied Network Science, vol. 6, no. 1, p. 21, 2021.
  18. Y. Shi, G. Wang, X.-p. Cai, J.-w. Deng, L. Zheng, H.-h. Zhu, M. Zheng, B. Yang, and Z. Chen, “An overview of covid-19,” Journal of Zhejiang University. Science. B, vol. 21, no. 5, p. 343, 2020.
  19. K. N. Hafiz and K. F. Haque, “Convolutional neural network (cnn) in covid-19 detection: A case study with chest ct scan images,” in 2022 IEEE Region 10 Symposium (TENSYMP), 2022, pp. 1–6.
  20. D. Balsamo, P. Bajardi, A. Salomone, and R. Schifanella, “Patterns of routes of administration and drug tampering for nonmedical opioid consumption: data mining and content analysis of reddit discussions,” Journal of Medical Internet Research, vol. 23, no. 1, p. e21212, 2021.
  21. J. Sawicki, M. Ganzha, M. Paprzycki, and A. Bădică, “Exploring usability of reddit in data science and knowledge processing,” arXiv preprint arXiv:2110.02158, 2021.
  22. C. A. Melton, O. A. Olusanya, N. Ammar, and A. Shaban-Nejad, “Public sentiment analysis and topic modeling regarding covid-19 vaccines on the reddit social media platform: A call to action for strengthening vaccine confidence,” Journal of Infection and Public Health, vol. 14, no. 10, pp. 1505–1512, 2021.
  23. A. Hagberg, P. Swart, and D. S Chult, “Exploring network structure, dynamics, and function using networkx,” Los Alamos National Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 2008.
  24. “Gravis library, https://robert-haas.github.io/gravis-docs/.”
  25. R. Tarjan, “Depth-first search and linear graph algorithms,” in 12th Annual Symposium on Switching and Automata Theory (swat 1971), 1971, pp. 114–121.
  26. R. Campos, V. Mangaravite, A. Pasquali, A. Jorge, C. Nunes, and A. Jatowt, “Yake! keyword extraction from single documents using multiple local features,” Information Sciences, vol. 509, pp. 257–289, 2020.
  27. L. C. Freeman et al., “Centrality in social networks: Conceptual clarification,” Social network: critical concepts in sociology. Londres: Routledge, vol. 1, pp. 238–263, 2002.
  28. V. A. Traag, L. Waltman, and N. J. Van Eck, “From louvain to leiden: guaranteeing well-connected communities,” Scientific reports, vol. 9, no. 1, p. 5233, 2019.
  29. P. Pons and M. Latapy, “Computing communities in large networks using random walks,” in Computer and Information Sciences-ISCIS 2005: 20th International Symposium, Istanbul, Turkey, October 26-28, 2005. Proceedings 20.   Springer, 2005, pp. 284–293.
  30. D. Ye and S. Pennisi, “Analysing interactions in online discussions through social network analysis,” Journal of Computer Assisted Learning, vol. 38, pp. n/a–n/a, 01 2022.
  31. S. Serpa, “Digital society and digital sociology: One thing leads to the other,” Science Insights, vol. 38, pp. 314–316, 08 2021.

Summary

We haven't generated a summary for this paper yet.