Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding Domain-Size Generalization in Markov Logic Networks (2403.15933v3)

Published 23 Mar 2024 in cs.AI and cs.LG

Abstract: We study the generalization behavior of Markov Logic Networks (MLNs) across relational structures of different sizes. Multiple works have noticed that MLNs learned on a given domain generalize poorly across domains of different sizes. This behavior emerges from a lack of internal consistency within an MLN when used across different domain sizes. In this paper, we quantify this inconsistency and bound it in terms of the variance of the MLN parameters. The parameter variance also bounds the KL divergence between an MLN's marginal distributions taken from different domain sizes. We use these bounds to show that maximizing the data log-likelihood while simultaneously minimizing the parameter variance corresponds to two natural notions of generalization across domain sizes. Our theoretical results apply to Exponential Random Graphs and other Markov network based relational models. Finally, we observe that solutions known to decrease the variance of the MLN parameters, like regularization and Domain-Size Aware MLNs, increase the internal consistency of the MLNs. We empirically verify our results on four different datasets, with different methods to control parameter variance, showing that controlling parameter variance leads to better generalization.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com