Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Observation of the dual quantum spin Hall insulator by density-tuned correlations in a van der Waals monolayer (2403.15912v1)

Published 23 Mar 2024 in cond-mat.mes-hall, cond-mat.mtrl-sci, and cond-mat.str-el

Abstract: The convergence of topology and correlations represents a highly coveted realm in the pursuit of novel quantum states of matter. Introducing electron correlations to a quantum spin Hall (QSH) insulator can lead to the emergence of a fractional topological insulator and other exotic time-reversal-symmetric topological order, not possible in quantum Hall and Chern insulator systems. However, the QSH insulator with quantized edge conductance remains rare, let alone that with significant correlations. In this work, we report a novel dual QSH insulator within the intrinsic monolayer crystal of TaIrTe4, arising from the interplay of its single-particle topology and density-tuned electron correlations. At charge neutrality, monolayer TaIrTe4 demonstrates the QSH insulator that aligns with single-particle band structure calculations, manifesting enhanced nonlocal transport and quantized helical edge conductance. Interestingly, upon introducing electrons from charge neutrality, TaIrTe4 only shows metallic behavior in a small range of charge densities but quickly goes into a new insulating state, entirely unexpected based on TaIrTe4's single-particle band structure. This insulating state could arise from a strong electronic instability near the van Hove singularities (VHS), likely leading to a charge density wave (CDW). Remarkably, within this correlated insulating gap, we observe a resurgence of the QSH state, marked by the revival of nonlocal transport and quantized helical edge conduction. Our observation of helical edge conduction in a CDW gap could bridge spin physics and charge orders. The discovery of a dual QSH insulator introduces a new method for creating topological flat minibands via CDW superlattices, which offer a promising platform for exploring time-reversal-symmetric fractional phases and electromagnetism.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (66)
  1. Wen, X.-G. Choreographed entanglement dances: Topological states of quantum matter. Science 363, eaal3099 (2019).
  2. Tokura, Y. Quantum materials at the crossroads of strong correlation and topology. Nature Materials 21, 971–973 (2022).
  3. Fractional topological insulators. Physical Review Letters 103, 196803 (2009).
  4. Fractional topological insulators in three dimensions. Physical Review Letters 105, 246809 (2010).
  5. Time-reversal symmetric hierarchy of fractional incompressible liquids. Physical Review B 84, 165138 (2011).
  6. Goerbig, M. From fractional chern insulators to a fractional quantum spin hall effect. The European Physical Journal B 85, 1–8 (2012).
  7. Fractional quantum spin Hall effect in flat-band checkerboard lattice model. Physical Review B 90, 081102 (2014).
  8. Time-reversal symmetric u⁢(1)𝑢1u(1)italic_u ( 1 ) quantum spin liquids. Physical Review X 6, 011034 (2016).
  9. Symmetry fractionalization, defects, and gauging of topological phases. Physical Review B 100, 115147 (2019).
  10. Time-Reversal Invariant Topological moiré Flatband: A Platform for the Fractional Quantum Spin Hall Effect. arXiv preprint arXiv:2309.07222 (2023).
  11. Dirac quantization and fractional magnetoelectric effect in interacting topological insulators. Physical Review B 82, 153101 (2010).
  12. Fractional electromagnetic response in a three-dimensional chiral anomalous semimetal. Physical Review B 106, 045111 (2022).
  13. Colloquium: topological insulators. Reviews of Modern Physics 82, 3045 (2010).
  14. Fractional quantum Hall effect in the absence of Landau levels. Nature Communications 2, 389 (2011).
  15. Fractional quantum Hall states at zero magnetic field. Physical Review Letters 106, 236804 (2011).
  16. High-temperature fractional quantum Hall states. Physical Review Letters 106, 236802 (2011).
  17. Fractional chern insulator. Physical Review X 1, 021014 (2011).
  18. The fractional quantum Hall effect. Reviews of Modern Physics 71, S298 (1999).
  19. Xie, Y. et al. Fractional chern insulators in magic-angle twisted bilayer graphene. Nature 600, 439–443 (2021).
  20. Cai, J. et al. Signatures of Fractional Quantum Anomalous Hall States in Twisted MoTe22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT. Nature 622, 63–68 (2023).
  21. Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT. Nature 622, 69–73 (2023).
  22. Park, H. et al. Observation of Fractionally Quantized Anomalous Hall Effect. Nature 622, 74–79 (2023).
  23. Xu, F. et al. Observation of integer and fractional quantum anomalous Hall effects in twisted bilayer MoTe22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT. Physical Review X 13, 031037 (2023).
  24. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).
  25. Konig, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).
  26. Yang, F. et al. Spatial and energy distribution of topological edge states in single Bi(111) bilayer. Physical Review Letters 109, 016801 (2012).
  27. Xu, Y. et al. Large-gap quantum spin Hall insulators in tin films. Physical Review Letters 111, 136804 (2013).
  28. Drozdov, I. K. et al. One-dimensional topological edge states of bismuth bilayers. Nature Physics 10, 664–669 (2014).
  29. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).
  30. Robust helical edge transport in gated InAs/GaSb bilayers. Physical Review Letters 114, 096802 (2015).
  31. Zhu, F.-F. et al. Epitaxial growth of two-dimensional stanene. Nature Materials 14, 1020–1025 (2015).
  32. Li, X.-B. et al. Experimental observation of topological edge states at the surface step edge of the topological insulator ZrTe55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT. Physical Review Letters 116, 176803 (2016).
  33. Fei, Z. et al. Edge conduction in monolayer WTe22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT. Nature Physics 13, 677–682 (2017).
  34. Tang, S. et al. Quantum spin Hall state in monolayer 1T’-WTe22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT. Nature Physics 13, 683–687 (2017).
  35. Dong, X. et al. Observation of topological edge states at the step edges on the surface of type-II Weyl semimetal TaIrTe44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT. ACS Nano 13, 9571–9577 (2019).
  36. Shumiya, N. et al. Evidence of a room-temperature quantum spin Hall edge state in a higher-order topological insulator. Nature Materials 21, 1111–1115 (2022).
  37. Excitonic topological order in imbalanced electron-hole bilayers. Nature 619, 57–62 (2023).
  38. Wu, S. et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 359, 76–79 (2018).
  39. Zhao, W. et al. Realization of the Haldane Chern insulator in a moiré lattice. Nature Physics 1–6 (2024).
  40. Chern insulators, van hove singularities and topological flat bands in magic-angle twisted bilayer graphene. Nature Materials 20, 488–494 (2021).
  41. Zhou, H. et al. Isospin magnetism and spin-polarized superconductivity in bernal bilayer graphene. Science 375, 774–778 (2022).
  42. Topological kagome magnets and superconductors. Nature 612, 647–657 (2022).
  43. Teng, X. et al. Discovery of charge density wave in a kagome lattice antiferromagnet. Nature 609, 490–495 (2022).
  44. Liu, Y. et al. Raman signatures of broken inversion symmetry and in-plane anisotropy in type-II Weyl semimetal candidate TaIrTe44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT. Advanced Materials 30, 1706402 (2018).
  45. Ma, J. et al. Nonlinear photoresponse of type-II Weyl semimetals. Nature Materials 18, 476–481 (2019).
  46. Belopolski, I. et al. Signatures of a time-reversal symmetric Weyl semimetal with only four Weyl points. Nature Communications 8, 942 (2017).
  47. Cai, S. et al. Observation of superconductivity in the pressurized Weyl-semimetal candidate TaIrTe44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT. Physical Review B 99, 020503 (2019).
  48. Kumar, D. et al. Room-temperature nonlinear Hall effect and wireless radiofrequency rectification in Weyl semimetal TaIrTe44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT. Nature Nanotechnology 16, 421–425 (2021).
  49. van der Waals stacking-induced topological phase transition in layered ternary transition metal chalcogenides. Nano Letters 17, 467–475 (2017).
  50. Quantum spin Hall effect in monolayer and bilayer TaIrTe44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT. Physical Review B 102, 041109 (2020).
  51. Roth, A. et al. Nonlocal transport in the quantum spin Hall state. Science 325, 294–297 (2009).
  52. Stability of the quantum spin Hall effect: Effects of interactions, disorder, and 𝒵2subscript𝒵2\mathcal{Z}_{2}caligraphic_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT topology. Physical Review B 73, 045322 (2006).
  53. Maciejko, J. et al. Kondo effect in the helical edge liquid of the quantum spin Hall state. Physical Review Letters 102, 256803 (2009).
  54. Robustness of quantum spin Hall effect in an external magnetic field. Physical Review B 90, 115305 (2014).
  55. Ma, E. Y. et al. Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry. Nature Communications 6, 7252 (2015).
  56. Localization: theory and experiment. Reports on Progress in Physics 56, 1469 (1993).
  57. Li, C. et al. Electrical detection of charge-current-induced spin polarization due to spin-momentum locking in Bi22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTSe33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT. Nature Nanotechnology 9, 218–224 (2014).
  58. Xu, S.-Y. et al. Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT. Nature Physics 14, 900–906 (2018).
  59. Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337–342 (2019).
  60. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B 54, 11169 (1996).
  61. Generalized gradient approximation made simple. Physical Review Letters 77, 3865 (1996).
  62. Van der Waals density functionals applied to solids. Physical Review B 83, 195131 (2011).
  63. Mostofi, A. A. et al. wannier90: A tool for obtaining maximally-localised Wannier functions. Computer Physics Communications 178, 685–699 (2008).
  64. First principles phonon calculations in materials science. Scripta Materialia 108, 1–5 (2015).
  65. Bryant, G. W. Surface states of ternary semiconductor alloys: effect of alloy fluctuations in one-dimensional models with realistic atoms. Physical Review B 31, 5166 (1985).
  66. Fröhlich, H. On the theory of superconductivity: The one-dimensional case. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 223, 296–305 (1954).
Citations (11)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com