CaloPointFlow II Generating Calorimeter Showers as Point Clouds (2403.15782v2)
Abstract: The simulation of calorimeter showers presents a significant computational challenge, impacting the efficiency and accuracy of particle physics experiments. While generative ML models have been effective in enhancing and accelerating the conventional physics simulation processes, their application has predominantly been constrained to fixed detector readout geometries. With CaloPointFlow we have presented one of the first models that can generate a calorimeter shower as a point cloud. This study describes CaloPointFlow II, which exhibits several significant improvements compared to its predecessor. This includes a novel dequantization technique, referred to as CDF-Dequantization, and a normalizing flow architecture, referred to as DeepSet- Flow. The new model was evaluated with the fast Calorimeter Simulation Challenge (CaloChallenge) Dataset II and III.
- I. Zurbano Fernandez et al., High-Luminosity Large Hadron Collider (HL-LHC): Technical design report, CERN Yellow Reports: Monographs 10/2020 (2020), 10.23731/CYRM-2020-0010.
- S. Agostinelli et al., GEANT4–a simulation toolkit, Nucl. Instrum. Meth. A 506, 250 (2003), 10.1016/S0168-9002(03)01368-8.
- J. Albrecht et al., A Roadmap for HEP Software and Computing R&D for the 2020s, Comput. Softw. Big Sci. 3(1), 7 (2019), 10.1007/s41781-018-0018-8, 1712.06982.
- Hl-lhc software and computing review panel, 2nd report, Tech. rep., CERN (2022).
- E. Barberio et al., Fast simulation of electromagnetic showers in the ATLAS calorimeter: Frozen showers, J. Phys. Conf. Ser. 160, 012082 (2009), 10.1088/1742-6596/160/1/012082.
- E. Barberio et al., Fast shower simulation in the ATLAS calorimeter, J. Phys. Conf. Ser. 119, 032008 (2008), 10.1088/1742-6596/119/3/032008.
- R. Rahmat and R. Kroeger, HF GFlash, Phys. Procedia 37, 340 (2012), 10.1016/j.phpro.2012.02.385.
- R. Rahmat, Performance of HFGFlash at CMS, EPJ Web Conf. 49, 18005 (2013), 10.1051/epjconf/20134918005.
- R. Rahmat, Upgrading HFGFlash for Faster Simulation at Super LHC, J. Phys. Conf. Ser. 513, 022031 (2014), 10.1088/1742-6596/513/2/022031.
- D. Jang, Parametrized simulation of the CMS calorimeter using GFlash, In 2009 IEEE Nuclear Science Symposium and Medical Imaging Conference, pp. 2074–2080, 10.1109/NSSMIC.2009.5402114 (2009).
- S.-Y. Jun, Gflash as a parameterized calorimeter simulation for the CMS experiment, J. Phys. Conf. Ser. 293, 012023 (2011), 10.1088/1742-6596/293/1/012023.
- G. Grindhammer and S. Peters, The Parameterized simulation of electromagnetic showers in homogeneous and sampling calorimeters, In International Conference on Monte Carlo Simulation in High-Energy and Nuclear Physics - MC 93 (1993), hep-ex/0001020.
- K. Mahboubi and K. Jakobs, A fast parametrization of electromagnetic and hadronic calorimeter showers, Tech. rep., CERN, Geneva, All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-SOFT-PUB-2006-001 (2005).
- G. Grindhammer, M. Rudowicz and S. Peters, The Fast Simulation of Electromagnetic and Hadronic Showers, Nucl. Instrum. Meth. A 290, 469 (1990), 10.1016/0168-9002(90)90566-O.
- M. Paganini, L. de Oliveira and B. Nachman, Accelerating Science with Generative Adversarial Networks: An Application to 3D Particle Showers in Multilayer Calorimeters, Phys. Rev. Lett. 120(4), 042003 (2018), 10.1103/PhysRevLett.120.042003, 1705.02355.
- M. Paganini, L. de Oliveira and B. Nachman, CaloGAN : Simulating 3D high energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networks, Phys. Rev. D97(1), 014021 (2018), 10.1103/PhysRevD.97.014021, 1712.10321.
- L. de Oliveira, M. Paganini and B. Nachman, Controlling Physical Attributes in GAN-Accelerated Simulation of Electromagnetic Calorimeters, J. Phys. Conf. Ser. 1085(4), 042017 (2018), 10.1088/1742-6596/1085/4/042017, 1711.08813.
- Generating and refining particle detector simulations using the Wasserstein distance in adversarial networks, Comput. Softw. Big Sci. 2(1), 4 (2018), 10.1007/s41781-018-0008-x, 1802.03325.
- M. Erdmann, J. Glombitza and T. Quast, Precise simulation of electromagnetic calorimeter showers using a Wasserstein Generative Adversarial Network, Comput. Softw. Big Sci. 3(1), 4 (2019), 10.1007/s41781-018-0019-7, 1807.01954.
- D. Belayneh et al., Calorimetry with deep learning: particle simulation and reconstruction for collider physics, Eur. Phys. J. C 80(7), 688 (2020), 10.1140/epjc/s10052-020-8251-9, 1912.06794.
- Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed, Comput.Softw.Big Sci. 5, 13 (2020), 10.1007/s41781-021-00056-0, 2005.05334.
- ATLAS Collaboration, Deep generative models for fast shower simulation in ATLAS, ATL-SOFT-PUB-2018-001 (2018).
- G. Aad et al., Deep Generative Models for Fast Photon Shower Simulation in ATLAS, Comput. Softw. Big Sci. 8(1), 7 (2024), 10.1007/s41781-023-00106-9, 2210.06204.
- C. Krause and D. Shih, CaloFlow: Fast and Accurate Generation of Calorimeter Showers with Normalizing Flows, Phys.Rev.D 107, 113003 (2021), 10.1103/PhysRevD.107.113003, 2106.05285.
- C. Krause and D. Shih, CaloFlow II: Even Faster and Still Accurate Generation of Calorimeter Showers with Normalizing Flows, Phys.Rev.D 107, 113004 (2021), 10.1103/PhysRevD.107.113004, 2110.11377.
- Hadrons, Better, Faster, Stronger, Mach.Learn.Sci.Tech. 3, 025014 (2021), 10.1088/2632-2153/ac7848, 2112.09709.
- G. Aad et al., AtlFast3: the next generation of fast simulation in ATLAS, Comput. Softw. Big Sci. 6, 7 (2022), 10.1007/s41781-021-00079-7, 2109.02551.
- V. Mikuni and B. Nachman, Score-based Generative Models for Calorimeter Shower Simulation, Phys.Rev.D 106, 092009 (2022), 10.1103/PhysRevD.106.092009, 2206.11898.
- V. Mikuni and B. Nachman, CaloScore v2: single-shot calorimeter shower simulation with diffusion models, JINST 19(02), P02001 (2024), 10.1088/1748-0221/19/02/P02001, 2308.03847.
- A. Adelmann et al., New directions for surrogate models and differentiable programming for High Energy Physics detector simulation, In 2022 Snowmass Summer Study (2022), 2203.08806.
- C. Krause, I. Pang and D. Shih, CaloFlow for CaloChallenge Dataset 1, arXiv preprint arXiv:2210.14245 (2022), 2210.14245.
- CaloMan: Fast generation of calorimeter showers with density estimation on learned manifolds, In 36th Conference on Neural Information Processing Systems (2022), 2211.15380.
- CaloDVAE : Discrete Variational Autoencoders for Fast Calorimeter Shower Simulation, arXiv preprint arXiv:2210.07430 (2022), 2210.07430.
- S. Schnake, D. Krücker and K. Borras, Generating calorimeter showers as point clouds, https://ml4physicalsciences.github.io/2022/files/NeurIPS_ML4PS_2022_77.pdf (2022).
- L2LFlows: Generating High-Fidelity 3D Calorimeter Images, JINST 18, P10017 (2023), 10.1088/1748-0221/18/10/P10017, 2302.11594.
- New angles on fast calorimeter shower simulation, Mach. Learn. Sci. Tech. 4(3), 035044 (2023), 10.1088/2632-2153/acefa9, 2303.18150.
- CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter Simulation, JINST 18, P11025 (2023), 10.1088/1748-0221/18/11/P11025, 2305.04847.
- CaloClouds II: Ultra-Fast Geometry-Independent Highly-Granular Calorimeter Simulation, arXiv preprint arXiv:2309.05704 (2023), 2309.05704.
- Ultra-High-Resolution Detector Simulation with Intra-Event Aware GAN and Self-Supervised Relational Reasoning, arXiv preprint arXiv:2303.08046 (2023), 2303.08046.
- Machine Learning methods for simulating particle response in the Zero Degree Calorimeter at the ALICE experiment, CERN, arXiv preprint arXiv:2306.13606 (2023), 2306.13606.
- Comparison of Point Cloud and Image-based Models for Calorimeter Fast Simulation, arXiv preprint arXiv:2307.04780 (2023), 2307.04780.
- O. Amram and K. Pedro, CaloDiffusion with GLaM for High Fidelity Calorimeter Simulation, Phys.Rev.D 108, 072014 (2023), 10.1103/PhysRevD.108.072014, 2308.03876.
- SuperCalo: Calorimeter shower super-resolution, arXiv preprint arXiv:2308.11700 (2023), 2308.11700.
- H. Hashemi and C. Krause, Deep Generative Models for Detector Signature Simulation: An Analytical Taxonomy, arXiv preprint arXiv:2312.09597 (2023), 2312.09597.
- Normalizing Flows for High-Dimensional Detector Simulations, arXiv preprint arXiv:2312.09290 (2023), 2312.09290.
- Inductive CaloFlow, arXiv preprint arXiv:2305.11934 (2023), 2305.11934.
- S. Diefenbacher, V. Mikuni and B. Nachman, Refining Fast Calorimeter Simulations with a Schrödinger Bridge, arXiv preprint arXiv:2308.12339 (2023), 2308.12339.
- SR-GAN for SR-gamma: photon super resolution at collider experiments, Eur.Phys.J.C 83, 1001 (2023), 10.1140/epjc/s10052-023-12178-3, 2308.09025.
- B. Käch, I. Melzer-Pellmann and D. Krücker, Pay attention to mean-fields for point cloud generation, https://ml4physicalsciences.github.io/2023/files/NeurIPS_ML4PS_2023_10.pdf (2023).
- C. Collaboration, The Phase-2 Upgrade of the CMS Endcap Calorimeter, Tech. rep., CERN, 10.17181/CERN.IV8M.1JY2 (2017).
- E. Buhmann, G. Kasieczka and J. Thaler, EPiC-GAN: Equivariant Point Cloud Generation for Particle Jets, SciPost Phys. 15, 130 (2023), 10.21468/SciPostPhys.15.4.130, 2301.08128.
- B. Käch, D. Krücker and I. Melzer-Pellmann, Point Cloud Generation using Transformer Encoders and Normalising Flows, arXiv preprint arXiv:2211.13623 (2022), 2211.13623.
- B. Käch and I. Melzer-Pellmann, Attention to Mean-Fields for Particle Cloud Generation, arXiv preprint arXiv:2305.15254 (2023), 2305.15254.
- V. Mikuni, B. Nachman and M. Pettee, Fast Point Cloud Generation with Diffusion Models in High Energy Physics, Phys.Rev.D 108, 036025 (2023), 10.1103/PhysRevD.108.036025, 2304.01266.
- DeepTreeGANv2: Iterative Pooling of Point Clouds, arXiv preprint arXiv:2312.00042 (2023), 2312.00042.
- DeepTreeGAN: Fast Generation of High Dimensional Point Clouds, arXiv preprint arXiv:2311.12616 (2023), 2311.12616.
- Particle Cloud Generation with Message Passing Generative Adversarial Networks, In 35th Conference on Neural Information Processing Systems (2021), 2106.11535.
- EPiC-ly Fast Particle Cloud Generation with Flow-Matching and Diffusion, arXiv preprint arXiv:2310.00049 (2023), 2310.00049.
- PC-JeDi: Diffusion for Particle Cloud Generation in High Energy Physics, SciPost Phys. 16, 018 (2024), 10.21468/SciPostPhys.16.1.018, 2303.05376.
- Faster diffusion model with improved quality for particle cloud generation, Phys. Rev. D 109(1), 012010 (2024), 10.1103/PhysRevD.109.012010, 2307.06836.
- Flow matching beyond kinematics: Generating jets with particle-id and trajectory displacement information, arXiv preprint arXiv:2312.00123 (2023).
- Fast Calorimeter Simulation Challenge, https://calochallenge.github.io/homepage/ (2022).
- Fast Calorimeter Simulation Challenge 2022 - Dataset 2, 10.5281/zenodo.6366271 (2022).
- Fast Calorimeter Simulation Challenge 2022 - Dataset 3, 10.5281/zenodo.6366324 (2022).
- Pointflow: 3d point cloud generation with continuous normalizing flows, In 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 10.1109/iccv.2019.00464 (2019).
- D. P. Kingma and M. Welling, Auto-encoding variational bayes, arXiv preprint arXiv:1312.6114 (2013), 1312.6114.
- Neural Spline Flows, In 33rd Conference on Neural Information Processing Systems (NeurIPS 2019) (2019), 1906.04032.
- B. Uria, I. Murray and H. Larochelle, Rnade: The real-valued neural autoregressive density-estimator, arXiv preprint arXiv:1306.0186 (2014), 1306.0186.
- Flow++: Improving flow-based generative models with variational dequantization and architecture design, arXiv preprint arXiv:1902.00275 (2019), 1902.00275.
- L. Dinh, J. Sohl-Dickstein and S. Bengio, Density estimation using real nvp, arXiv preprint arXiv:1605.08803 (2017), 1605.08803.
- Survae flows: Surjections to bridge the gap between vaes and flows, arXiv preprint arXiv:2007.02731 (2020), 2007.02731.
- Deep sets, arXiv preprint arXiv:1703.06114 (2018), 1703.06114.
- Graph normalizing flows, arXiv preprint arXiv:1905.13177 (2019), 1905.13177.