Anomalies and Dynamics in Strongly-Coupled Gauge Theories, New Criteria for Different Phases, and a Lesson from Supersymmetric Gauge Theories (2403.15775v1)
Abstract: We review recent developments in our understanding of the dynamics of strongly-coupled chiral $SU(N)$ gauge theories in four dimensions, problems which are potentially important in our quest to go beyond the standard $SU(3){QCD} \times (SU(2) \times U(1)){GWS}$ model of the fundamental interactions. The generalized symmetries and associated new 't Hooft anomaly-matching constraints allow us to exclude, in a wide class of chiral gauge theories, confining vacuum with full flavor symmetries supported by a set of color-singlet massless composite fermions. The color-flavor-locked dynamical Higgs phase, dynamical Abelianization or more general symmetry breaking phase, appear as plausible IR dynamics, depending on the massless matter fermions present. We revisit and discuss critically several well-known confinement criteria in the literature, for both chiral and vectorlike gauge theories, and propose tentative, new criteria for discriminating different phases. Finally, we review an idea which might sound rather surprising at first, but is indeed realized in some softly-broken supersymmetric theories, that confinement in QCD is a small deformation (in the IR end of the renormalization-group flow) of a strongly-coupled, nonlocal, nonAbelian conformal fixed point.
- S. Bolognesi, K. Konishi, and M. Shifman, “Patterns of symmetry breaking in chiral QCD,” Phys. Rev. D, 97, no. 9, p. 094007, 2018.
- S. Bolognesi and K. Konishi, “Dynamics and symmetries in chiral SU(N)𝑆𝑈𝑁SU(N)italic_S italic_U ( italic_N ) gauge theories,” Phys. Rev. D, 100, no. 11, p. 114008, 2019.
- S. Bolognesi, K. Konishi, and A. Luzio, “Gauging 1-form center symmetries in simple SU(N)𝑆𝑈𝑁SU(N)italic_S italic_U ( italic_N ) gauge theories,” JHEP, 01, p. 048, 2020.
- S. Bolognesi, K. Konishi, and A. Luzio, “Dynamics from symmetries in chiral SU(N)𝑆𝑈𝑁SU(N)italic_S italic_U ( italic_N ) gauge theories,” JHEP, 09, p. 001, 2020.
- S. Bolognesi, K. Konishi, and A. Luzio, “Probing the dynamics of chiral SU(N)𝑆𝑈𝑁SU(N)italic_S italic_U ( italic_N ) gauge theories via generalized anomalies,” Phys. Rev. D, 103, no. 9, p. 094016, 2021.
- S. Bolognesi, K. Konishi, and A. Luzio, “Strong anomaly and phases of chiral gauge theories,” JHEP, 08, p. 028, 2021.
- S. Bolognesi, K. Konishi, and A. Luzio, “Anomalies and phases of strongly-coupled chiral gauge theories: recent developments,” International Journal of Modern Physics A, 37, pp. 36, 2230014, 2022.
- S. Bolognesi, K. Konishi, and A. Luzio, “Dynamical Abelianization and anomalies in chiral gauge theories,” JHEP, 12, p. 110, 2022.
- S. Bolognesi, K. Konishi and A. Luzio, “The ℤ2subscriptℤ2{\mathbb{Z}}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT anomaly in some chiral gauge theories,” JHEP 08, 125 (2023) [arXiv:2307.03822 [hep-th]].
- S. Bolognesi, K. Konishi and A. Luzio, “Dynamics of strongly-coupled chiral gauge theories,” J. Phys. Conf. Ser. 2531, no.1, 012006 (2023) [arXiv:2304.03357 [hep-th]].
- R. Auzzi, R. Grena and K. Konishi, “Almost conformal vacua and confinement,” Nucl. Phys. B 653, 204-226 (2003) [arXiv:hep-th/0211282 [hep-th]].
- S. Giacomelli and K. Konishi, “Singular SQCD Vacua and Confinement,” JHEP 12, 083 (2012) [arXiv:1209.5328 [hep-th]].
- S. Giacomelli and K. Konishi, “New Confinement Phases from Singular SCFT,” JHEP 03, 009 (2013) [arXiv:1301.0420 [hep-th]].
- S. Bolognesi, S. Giacomelli and K. Konishi, “𝒩=2𝒩2\mathcal{N}=2caligraphic_N = 2 Argyres-Douglas theories, 𝒩=1𝒩1\mathcal{N}=1caligraphic_N = 1 SQCD and Seiberg duality,” JHEP 08, 131 (2015) [arXiv:1505.05801 [hep-th]].
- S. Raby, S. Dimopoulos, and L. Susskind, “Tumbling Gauge Theories,” Nucl. Phys. B, 169, pp. 373–383, 1980.
- T. Appelquist, A. G. Cohen, M. Schmaltz, and R. Shrock, “New constraints on chiral gauge theories,” Phys. Lett. B,459, pp. 235–241, 1999.
- T. Appelquist, Z.-y. Duan, and F. Sannino, “Phases of chiral gauge theories,” Phys. Rev. D, 61, p. 125009, 2000.
- I. Bars and S. Yankielowicz, “Composite Quarks and Leptons as Solutions of Anomaly Constraints,” Phys. Lett. B, 101, pp. 159–165, 1981.
- E. Eichten, R. D. Peccei, J. Preskill, and D. Zeppenfeld, “Chiral Gauge Theories in the 1/n Expansion,” Nucl. Phys. B, 268, p161, 1986.
- C. Q. Geng and R. E. Marshak, “Two Realistic Preon Models With SU(N𝑁Nitalic_N) Metacolor Satisfying Complementarity,” Phys. Rev. D, 35, p. 2278, 1987.
- J. Goity, R. D. Peccei, and D. Zeppenfeld, “Tumbling and Complementarity in a Chiral Gauge Theory,” Nucl. Phys. B, 262, 95, 1985.
- L. E. Ibanez and G. G. Ross, “Discrete gauge symmetry anomalies,” Phys. Lett. B, 260, pp. 291–295, 1991.
- Y.-L. Shi and R. Shrock, “AkF¯subscript𝐴𝑘¯𝐹A_{k}\bar{F}italic_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT over¯ start_ARG italic_F end_ARG chiral gauge theories,” Phys. Rev. D, 92, no. 10, p. 105032, 2015.
- Y.-L. Shi and R. Shrock, “Renormalization-Group Evolution and Nonperturbative Behavior of Chiral Gauge Theories with Fermions in Higher-Dimensional Representations,” Phys. Rev. D, 92, no. 12, p. 125009, 2015.
- M. Shifman and M. Unsal, “On Yang-Mills Theories with Chiral Matter at Strong Coupling,” Phys. Rev. D, 79, p. 105010, 2009.
- S. Dimopoulos, S. Raby, and L. Susskind, “Light Composite Fermions,” Nucl. Phys. B, 173, pp. 208–228, 1980.
- G. Veneziano, “Tumbling and the Strong Anomaly,” Phys. Lett. B, 102, pp. 139–143, 1981.
- Plenum Press, New York, 1980.
- N. Seiberg and E. Witten, “Electric - magnetic duality, monopole condensation, and confinement in n=2 supersymmetric yang-mills theory,” Nucl. Phys. B, 426, pp. 19–52, 1994.
- N. Seiberg and E. Witten, “Monopoles, duality and chiral symmetry breaking in n=2 supersymmetric qcd,” Nucl. Phys. B, 431, pp. 484–550, 1994.
- P. C. Argyres and A. E. Faraggi, “The vacuum structure and spectrum of N=2 supersymmetric SU(n) gauge theory,” Phys. Rev. Lett. 74, 3931-3934 (1995) [arXiv:hep-th/9411057 [hep-th]].
- A. Klemm, W. Lerche, S. Yankielowicz and S. Theisen, “Simple singularities and N=2 supersymmetric Yang-Mills theory,” Phys. Lett. B 344, 169-175 (1995) [arXiv:hep-th/9411048 [hep-th]].
- A. Hanany and Y. Oz, “On the quantum moduli space of vacua of N=2 supersymmetric SU(N(c)) gauge theories,” Nucl. Phys. B 452, 283-312 (1995) [arXiv:hep-th/9505075 [hep-th]].
- P. C. Argyres, M. R. Plesser and A. D. Shapere, “The Coulomb phase of N=2 supersymmetric QCD,” Phys. Rev. Lett. 75, 1699-1702 (1995) [arXiv:hep-th/9505100 [hep-th]].
- Y. Tachikawa, “N=2 supersymmetric dynamics for pedestrians,” [arXiv:1312.2684 [hep-th]].
- N. Seiberg, “Modifying the Sum Over Topological Sectors and Constraints on Supergravity,” JHEP 1007, 070 (2010) [arXiv:1005.0002 [hep-th]].
- A. Kapustin and N. Seiberg, “Coupling a QFT to a TQFT and Duality,” JHEP 1404, 001 (2014) [arXiv:1401.0740 [hep-th]].
- O. Aharony, N. Seiberg and Y. Tachikawa, “Reading between the lines of four-dimensional gauge theories,” JHEP 1308, 115 (2013) [arXiv:1305.0318 [hep-th]].
- D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, “Generalized Global Symmetries,” JHEP 1502, 172 (2015) [arXiv:1412.5148 [hep-th]].
- D. Gaiotto, A. Kapustin, Z. Komargodski and N. Seiberg, “Theta, Time Reversal, and Temperature,” JHEP 1705, 091 (2017) [arXiv:1703.00501 [hep-th]].
- Y. Tanizaki and Y. Kikuchi, “Vacuum structure of bifundamental gauge theories at finite topological angles,” JHEP 1706, 102 (2017) [arXiv:1705.01949 [hep-th]].
- H. Shimizu and K. Yonekura, “Anomaly constraints on deconfinement and chiral phase transition,” Phys. Rev. D 97, no. 10, 105011 (2018) [arXiv:1706.06104 [hep-th]].
- Y. Tanizaki, Y. Kikuchi, T. Misumi and N. Sakai, “Anomaly matching for the phase diagram of massless ℤNsubscriptℤ𝑁\mathbb{Z}_{N}blackboard_Z start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT-QCD,” Phys. Rev. D 97, no. 5, 054012 (2018) [arXiv:1711.10487 [hep-th]].
- M. M. Anber and E. Poppitz, “Two-flavor adjoint QCD,” Phys. Rev. D 98, no. 3, 034026 (2018) [arXiv:1805.12290 [hep-th]].
- P. B. Smith, A. Karasik, N. Lohitsiri and D. Tong, “On discrete anomalies in chiral gauge theories,” JHEP 01, 112 (2022). [arXiv:2106.06402 [hep-th]].
- M. M. Anber, S. Hong, and M. Son, “New anomalies, TQFTs, and confinement in bosonic chiral gauge theories,” JHEP, 02, p. 062, 2022.
- R. F. Dashen, “Some features of chiral symmetry breaking,” Phys. Rev. D 3, 1879-1889 (1971)
- P. Di Vecchia and G. Veneziano, “Chiral Dynamics in the Large n Limit,” Nucl. Phys. B 171, 253-272 (1980).
- E. Witten, “Large N Chiral Dynamics,” Annals Phys., 128, p. 363, 1980.
- K. Konishi, “Confinement, supersymmetry breaking and theta parameter dependence in the Seiberg-Witten model,” Phys. Lett. B 392, 101-105 (1997) [arXiv:hep-th/9609021 [hep-th]].
- N. J. Evans, S. D. H. Hsu and M. Schwetz, “Phase transitions in softly broken N=2 SQCD at nonzero theta angle,” Nucl. Phys. B 484, 124-140 (1997) [arXiv:hep-th/9608135 [hep-th]].
- E. Witten, “Current Algebra Theorems for the U(1) Goldstone Boson,” Nucl. Phys. B, 156, pp. 269–283, 1979.
- C. Rosenzweig, J. Schechter, and C. G. Trahern, “Is the Effective Lagrangian for QCD a Sigma Model?,” Phys. Rev. D, 21, p. 3388, 1980.
- K. Kawarabayashi and N. Ohta, “The Problem of η𝜂\etaitalic_η in the Large N𝑁Nitalic_N Limit: Effective Lagrangian Approach,” Nucl. Phys. B, 175, pp. 477–492, 1980.
- P. Nath and R. L. Arnowitt, “The U(1) Problem: Current Algebra and the Theta Vacuum,” Phys. Rev. D, 23, p. 473, 1981.
- G. Veneziano, “Tumbling and the Strong Anomaly,” Phys. Lett. B 102, 139-143 (1981).
- C. H. Sheu and M. Shifman, “Consistency of chiral symmetry breaking in chiral Yang-Mills theory with adiabatic continuity,” Phys. Rev. D 107, no.5, 054030 (2023) [arXiv:2212.14794 [hep-th]].
- G. ’t Hooft, “Topology of the Gauge Condition and New Confinement Phases in Nonabelian Gauge Theories,” Nucl. Phys. B 190, 455-478 (1981)
- K. Konishi, “The Magnetic Monopoles Seventy-Five Years Later,” Lect. Notes Phys. 737, 471-521 (2008) [arXiv:hep-th/0702102 [hep-th]].
- C. Csáki, H. Murayama, and O. Telem, “More exact results on chiral gauge theories: The case of the symmetric tensor,” Phys. Rev. D, vol. 105, no. 4, p. 045007, 2022.
- C. Csáki, H. Murayama, and O. Telem, “Some exact results in chiral gauge theories,” Phys. Rev. D, vol. 104, no. 6, p. 065018, 2021.
- C. Csáki, A. Gomes, H. Murayama, B. Noether, D. R. Varier and O. Telem, “Guide to anomaly-mediated supersymmetry-breaking QCD,” Phys. Rev. D 107, no.5, 054015 (2023) [arXiv:2212.03260 [hep-th]].
- L. F. Abbott and E. Farhi, “Are the Weak Interactions Strong?,” Phys. Lett. B 101, 69-72 (1981)
- P. C. Argyres, M. R. Plesser and N. Seiberg, “The Moduli space of vacua of N=2 SUSY QCD and duality in N=1 SUSY QCD,” Nucl. Phys. B 471, 159-194 (1996) [arXiv:hep-th/9603042 [hep-th]].
- G. Carlino, K. Konishi and H. Murayama, “Dynamical symmetry breaking in supersymmetric SU(n(c)) and USp(2n(c)) gauge theories,” Nucl. Phys. B 590, 37-122 (2000) [arXiv:hep-th/0005076 [hep-th]].
- D. Gaiotto, N. Seiberg and Y. Tachikawa, “Comments on scaling limits of 4d N=2 theories,” JHEP 01, 078 (2011) [arXiv:1011.4568 [hep-th]].
- Z. Komargodski and A. Schwimmer, “On Renormalization Group Flows in Four Dimensions,” JHEP 12, 099 (2011) [arXiv:1107.3987 [hep-th]].