Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Safe and Stable Formation Control with Distributed Multi-Agents Using Adaptive Control and Control Barrier Functions (2403.15674v2)

Published 23 Mar 2024 in eess.SY and cs.SY

Abstract: This manuscript considers the problem of ensuring stability and safety during formation control with distributed multi-agent systems in the presence of parametric uncertainty in the dynamics and limited communication. We propose an integrative approach that combines Control Barrier Functions, Adaptive Control, and connected graphs. A reference model is designed so as to ensure a safe and stable formation control strategy. This is combined with a provably correct adaptive control design that includes the use of a CBF-based safety filter that suitably generates safe reference commands. Numerical examples are provided to support the theoretical derivations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. E. Lavretsky, N. Hovakimyan, A. Calise, and V. Stepanyan, “Adaptive Vortex Seeking Formation Flight Neurocontrol,” in AIAA Guidance, Navigation, and Control Conference and Exhibit, (Reston, Virigina), American Institute of Aeronautics and Astronautics, 8 2003.
  2. Z. T. Dydek, A. M. Annaswamy, and E. Lavretsky, “Adaptive configuration control of multiple UAVs,” Control Engineering Practice, vol. 21, no. 8, pp. 1043–1052, 2013.
  3. R. Li, L. Zhang, L. Han, and J. Wang, “Multiple Vehicle Formation Control Based on Robust Adaptive Control Algorithm,” IEEE Intelligent Transportation Systems Magazine, vol. 9, no. 2, pp. 41–51, 2017.
  4. X. Cai and M. d. Queiroz, “Adaptive Rigidity-Based Formation Control for Multirobotic Vehicles With Dynamics,” IEEE Transactions on Control Systems Technology, vol. 23, no. 1, pp. 389–396, 2015.
  5. N. Xuan-Mung and S. K. Hong, “Robust adaptive formation control of quadcopters based on a leader–follower approach,” International Journal of Advanced Robotic Systems, vol. 16, p. 1729881419862733, 7 2019.
  6. W. Wang, J. Huang, C. Wen, and H. Fan, “Distributed adaptive control for consensus tracking with application to formation control of nonholonomic mobile robots,” Automatica, vol. 50, no. 4, pp. 1254–1263, 2014.
  7. L. Dai, Q. Cao, Y. Xia, and Y. Gao, “Distributed MPC for formation of multi-agent systems with collision avoidance and obstacle avoidance,” Journal of the Franklin Institute, vol. 354, no. 4, pp. 2068–2085, 2017.
  8. A. Wasik, J. N. Pereira, R. Ventura, P. U. Lima, and A. Martinoli, “Graph-based distributed control for adaptive multi-robot patrolling through local formation transformation,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1721–1728, 2016.
  9. J. F. Flores-Resendiz, D. Avilés, and E. Aranda-Bricaire, “Formation Control for Second-Order Multi-Agent Systems with Collision Avoidance,” Machines, vol. 11, no. 2, 2023.
  10. J. Fu, G. Wen, X. Yu, and Z. G. Wu, “Distributed Formation Navigation of Constrained Second-Order Multiagent Systems With Collision Avoidance and Connectivity Maintenance,” IEEE Transactions on Cybernetics, vol. 52, no. 4, pp. 2149–2162, 2022.
  11. L. Wang, A. D. Ames, and M. Egerstedt, “Safety Barrier Certificates for Collisions-Free Multirobot Systems,” IEEE Transactions on Robotics, vol. 33, no. 3, pp. 661–674, 2017.
  12. Y. Zhou, F. Lu, G. Pu, X. Ma, R. Sun, H. Y. Chen, and X. Li, “Adaptive Leader-Follower Formation Control and Obstacle Avoidance via Deep Reinforcement Learning,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4273–4280, 2019.
  13. A. Parvareh, M. Naderi Soorki, and A. Azizi, “The Robust Adaptive Control of Leader–Follower Formation in Mobile Robots with Dynamic Obstacle Avoidance,” Mathematics, vol. 11, no. 20, 2023.
  14. X. Yang and X. Fan, “A Distributed Formation Control Scheme with Obstacle Avoidance for Multiagent Systems,” Mathematical Problems in Engineering, vol. 2019, p. 3252303, 2019.
  15. X. Ge, Q. L. Han, J. Wang, and X. M. Zhang, “A Scalable Adaptive Approach to Multi-Vehicle Formation Control with Obstacle Avoidance,” IEEE/CAA Journal of Automatica Sinica, vol. 9, no. 6, pp. 990–1004, 2022.
  16. Q. Shi, T. Li, J. Li, C. L. P. Chen, Y. Xiao, and Q. Shan, “Adaptive leader-following formation control with collision avoidance for a class of second-order nonlinear multi-agent systems,” Neurocomputing, vol. 350, pp. 282–290, 2019.
  17. M. NAGUMO, “Ueber die Lage der Integralkurven gewoehlicher Differentialgleichungen,” Proceedings of the Physico-Mathematical Society of Japan. 3rd Series, vol. 24, pp. 551–559, 1942.
  18. F. Blanchini, “Set invariance in control,” Automatica, vol. 35, no. 11, pp. 1747–1767, 1999.
  19. J. Autenrieb and A. Annaswamy, “Safe and Stable Adaptive Control for a Class of Dynamic Systems,” in 2023 62nd IEEE Conference on Decision and Control (CDC), pp. 5059–5066, 2023.
  20. S. Prajna and A. Jadbabaie, “Safety Verification of Hybrid Systems Using Barrier Certificates,” in Hybrid Systems: Computation and Control (R. Alur and G. J. Pappas, eds.), (Berlin, Heidelberg), pp. 477–492, Springer Berlin Heidelberg, 2004.
  21. A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function based quadratic programs with application to adaptive cruise control,” in 53rd IEEE Conference on Decision and Control, pp. 6271–6278, 2014.
  22. R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with switching topology and time-delays,” IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004.
  23. Z. Li, Z. Duan, G. Chen, and L. Huang, “Consensus of Multiagent Systems and Synchronization of Complex Networks: A Unified Viewpoint,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, no. 1, pp. 213–224, 2010.
  24. A. M. Annaswamy, A. Guha, Y. Cui, S. Tang, P. A. Fisher, and J. E. Gaudio, “Online Algorithms and Policies Using Adaptive and Machine Learning Approaches,” 5 2021.

Summary

We haven't generated a summary for this paper yet.