Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Real-Time Reconfiguration and Connectivity Maintenance for AUVs Network Under External Disturbances using Distributed Nonlinear Model Predictive Control (2403.15671v1)

Published 23 Mar 2024 in eess.SY and cs.SY

Abstract: Advancements in underwater vehicle technology have significantly expanded the potential scope for deploying autonomous or remotely operated underwater vehicles in novel practical applications. However, the efficiency and maneuverability of these vehicles remain critical challenges, particularly in the dynamic aquatic environment. In this work, we propose a novel control scheme for creating multi-agent distributed formation control with limited communication between individual agents. In addition, the formation of the multi-agent can be reconfigured in real-time and the network connectivity can be maintained. The proposed use case for this scheme includes creating underwater mobile communication networks that can adapt to environmental or network conditions to maintain the quality of communication links for long-range exploration, seabed monitoring, or underwater infrastructure inspection. This work introduces a novel Distributed Nonlinear Model Predictive Control (DNMPC) strategy, integrating Control Lyapunov Functions (CLF) and Control Barrier Functions (CBF) with a relaxed decay rate, specifically tailored for 6-DOF underwater robotics. The effectiveness of our proposed DNMPC scheme was demonstrated through rigorous MATLAB simulations for trajectory tracking and formation reconfiguration in a dynamic environment. Our findings, supported by tests conducted using Software In The Loop (SITL) simulation, confirm the approach's applicability in real-time scenarios.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. J. Cortes and M. Egerstedt, “Coordinated control of multi-robot systems: A survey,” SICE Journal of Control, Measurement, and System Integration, vol. 10, no. 6, pp. 495–503, 2017.
  2. M. Van, Y. Sun, S. Mcllvanna, M.-N. Nguyen, F. Zocco, and Z. Liu, “Control of Multiple AUV Systems with Input Saturations using Distributed Fixed-Time Consensus Fuzzy Control,” IEEE Transactions on Fuzzy Systems, pp. 1–12, Jan. 2024, doi: https://doi.org/10.1109/tfuzz.2024.3368352.
  3. T. Yan, Z. Xu and S. X. Yang, “Consensus Formation Control for Multiple AUV Systems Using Distributed Bioinspired Sliding Mode Control,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 2, pp. 1081-1092, 2023.
  4. S. Heshmati, G. C. Karras, P. Marantos, and K. J. Kyriakopoulos, “A Robust Predictive Control Approach for Underwater Robotic Vehicles,” IEEE Transactions on Control Systems and Technology, vol. 28, no. 6, pp. 2352–2363, Nov. 2020.
  5. Z. Yan, P. Gong, W. Zhang, and W. Wu, “Model predictive control of autonomous underwater vehicles for trajectory tracking with external disturbances,” Ocean Engineering, vol. 217, pp. 107884–107884, Dec. 2020.
  6. C. Shen, Y. Shi, and B. Buckham, “Integrated Path Planning and Tracking Control of an AUV: A Unified Receding Horizon Optimization Approach,” IEEE-ASME Transactions on Mechatronics, vol. 22, no. 3, pp. 1163–1173, 2017.
  7. H. Li, P. Xie, and W. Yan, “Receding horizon formation tracking control of constrained underactuated autonomous underwater vehicles,” IEEE Transactions on Industrial Electronics, vol. 64, no. 6, pp. 5004–5013, Jun. 2017.
  8. H. Wei, C. Shen, and Y. Shi, “Distributed Lyapunov-Based Model Predictive Formation Tracking Control for Autonomous Underwater Vehicles Subject to Disturbances,” IEEE transactions on systems, man, and cybernetics, vol. 51, no. 8, pp. 5198–5208, 2021.
  9. W. B. Dunbar and R. M. Murray, “Distributed receding horizon control for multi-vehicle formation stabilization,” Automatica, vol. 42, no. 4, pp. 549–558, 2006.
  10. P. Wang and B. Ding, “Distributed RHC for tracking and formation of nonholonomic multi-vehicle systems,” IEEE Transactions on Automatic Control, vol. 59, no. 6, pp. 1439–1453, 2014.
  11. X. Xiang, G. Xu, Q. Zhang, Z. Xiao and X. Huang, “Coordinated control for multi-AUV systems based on hybrid automata,” 2007 IEEE International Conference on Robotics and Biomimetics, pp. 2121-212, 2007.
  12. J. Zeng, Z. Li, and K. Sreenath, “Enhancing Feasibility and Safety of Nonlinear Model Predictive Control with Discrete-Time Control Barrier Functions,” IEEE Conference on Decision and Control, Dec. 2021.
  13. C. T. Bandara, L. N. Kumari, S. Maithripala, and A. Ratnaweera, “Nonlinear Model Predictive Control of Robotic Systems with Control Lyapunov Functions,” Journal of Mechatronics and Robotics, vol. 4, no. 1, pp. 254–264, Jan. 2020.
  14. J. A. Primbs, V. Nevistic, and J. C. Doyle, “A receding horizon generalization of pointwise min-norm controllers,” IEEE Transactions on Automatic Control, vol. 45, no. 5, pp. 898–909, May 2000.
  15. J. Yu, A. Jadbabaie, J. Primbs, and Y. Huang, “Comparison of nonlinear control design techniques on a model of the Caltech ducted fan,” Automatica, vol. 37, no. 12, pp. 1971–1978, Dec. 2001.
  16. R. Grandia, A. Taylor, A. Singletary, M. Hutter, and A. Ames, “Nonlinear model predictive control of robotic systems with control Lyapunov functions,” Robotics: Science and Systems XVI, Jul. 2020.
  17. H. G. Bock and K. J. Plitt, “A multiple shooting algorithm for direct solution of optimal control problems,” IFAC Proceedings Volumes, vol. 17, no. 2, pp. 1603–1608, Jul. 1984.
  18. A. Agrawal and K. Sreenath, “Discrete Control Barrier Functions for Safety-Critical Control of Discrete Systems with Application to Bipedal Robot Navigation,” Robotics: Science and Systems, Jul. 2017.

Summary

We haven't generated a summary for this paper yet.