Incorporating Memory into Propagation of 1-Electron Reduced Density Matrices (2403.15596v4)
Abstract: For any linear system with unreduced dynamics governed by invertible propagators, we derive a closed, time-delayed, linear system for a reduced-dimensional quantity of interest. This method does not target dimensionality reduction: rather, this method helps shed light on the memory-dependence of $1$-electron reduced density matrices in time-dependent configuration interaction (TDCI), a scheme to solve for the correlated dynamics of electrons in molecules. Though time-dependent density functional theory has established that the $1$-electron reduced density possesses memory-dependence, the precise nature of this memory-dependence has not been understood. We derive a symmetry/constraint-preserving method to propagate reduced TDCI electron density matrices. In numerical tests on two model systems ($\text{H}_2$ and $\text{HeH}+$), we show that with sufficiently large time-delay (or memory-dependence), our method propagates reduced TDCI density matrices with high quantitative accuracy. We study the dependence of our results on time step and basis set. To implement our method, we derive the $4$-index tensor that relates reduced and full TDCI density matrices. Our derivation applies to any TDCI system, regardless of basis set, number of electrons, or choice of Slater determinants in the wave function.
- Model reduction of controlled Fokker–Planck and Liouville–von Neumann equations. Journal of Computational Dynamics, 7(1):1–33, 2020. doi:10.3934/jcd.2020001.
- Dynamic learning of correlation potentials for a time-dependent Kohn-Sham system. In Roya Firoozi, Negar Mehr, Esen Yel, Rika Antonova, Jeannette Bohg, Mac Schwager, and Mykel Kochenderfer, editors, Proceedings of The 4th Annual Learning for Dynamics and Control Conference, volume 168, of Proceedings of Machine Learning Research, pages 546–558. PMLR, 23–24 Jun 2022. URL: https://proceedings.mlr.press/v168/bhat22a.html.
- Machine learning a molecular Hamiltonian for predicting electron dynamics. International Journal of Dynamics and Control, 8:1089–1101, 2020. doi:10.1007/s40435-020-00699-8.
- JAX: composable transformations of Python+NumPy programs, 2018. http://github.com/google/jax.
- Modern Koopman Theory for Dynamical Systems. SIAM Review, 64(2):229–340, 2022. doi:10.1137/21M1401243.
- Stochastic Tools in Mathematics and Science. Springer New York, New York, NY, third edition, 2014. doi:10.1007/978-1-4614-6980-3.
- Optimal prediction and the Mori-Zwanzig representation of irreversible processes. Proceedings of the National Academy of Sciences, 97(7):2968–2973, 2000. doi:10.1073/pnas.97.7.2968.
- Computing generalized Langevin equations and generalized Fokker–Planck equations. Proceedings of the National Academy of Sciences, 106(27):10884–10889, 2009. doi:10.1073/pnas.0902633106.
- Universal dynamical steps in the exact time-dependent exchange-correlation potential. Physical Review Letters, 109(26):266404, 2012. doi:10.1103/PhysRevLett.109.266404.
- Toward a systematic molecular orbital theory for excited states. The Journal of Physical Chemistry, 96(1):135–149, 1992. doi:10.1021/j100180a030.
- Introduction to TDDFT. In Miguel A.L. Marques, Neepa T. Maitra, Fernando M.S. Nogueira, E.K.U. Gross, and Angel Rubio, editors, Fundamentals of Time-Dependent Density Functional Theory, pages 53–99. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. doi:10.1007/978-3-642-23518-4_4.
- Statistical learning for predicting density–matrix-based electron dynamics. Stat, 11(1):e439, 2022. doi:10.1002/sta4.439.
- Two-electron Rabi oscillations in real-time time-dependent density-functional theory. The Journal of Chemical Physics, 141(18):184112, 11 2014. doi:10.1063/1.4900514.
- Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. The Journal of Chemical Physics, 56(5):2257–2261, 09 1972. doi:10.1063/1.1677527.
- Configuration interaction singles, time-dependent Hartree–Fock, and time-dependent density functional theory for the electronic excited states of extended systems. The Journal of Chemical Physics, 111(24):10774–10786, 1999. doi:10.1063/1.480443.
- Time-delay observables for Koopman: Theory and applications. SIAM Journal on Applied Dynamical Systems, 19(2):886–917, 2020. doi:10.1137/18M1216572.
- Time-dependent exchange-correlation current density functionals with memory. The Journal of Chemical Physics, 121(18):8731–8741, 2004. doi:10.1063/1.1802793.
- Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems. SIAM, 2016. doi:10.1137/1.9781611974508.
- Developing new and understanding old approximations in TDDFT. Faraday Discussions, 224:382–401, 2020. doi:10.1039/D0FD00049C.
- Data-driven learning for the Mori-Zwanzig formalism: A generalization of the Koopman learning framework. SIAM Journal on Applied Dynamical Systems, 20(4):2558–2601, 2021. doi:10.1137/21M1401759.
- Charge and Energy Transfer Dynamics in Molecular Systems. Wiley-VCH, Weinheim, Germany, fourth edition, 2023. doi:10.1002/9783527633791.
- R. McWeeny. Methods of Molecular Quantum Mechanics. Chemistry, Physical and Theoretical. Academic Press, second edition, 1989.
- Hazime Mori. Transport, Collective Motion, and Brownian Motion. Progress of Theoretical Physics, 33(3):423–455, 03 1965. doi:10.1143/PTP.33.423.
- Y Ohtsuki and Y Fujimura. Bath-induced vibronic coherence transfer effects on femtosecond time-resolved resonant light scattering spectra from molecules. The Journal of Chemical Physics, 91(7):3903–3915, 1989. doi:10.1063/1.456822.
- Cupy: A numpy-compatible library for nvidia gpu calculations. In Proceedings of Workshop on Machine Learning Systems (LearningSys) in The Thirty-first Annual Conference on Neural Information Processing Systems, 2017. URL: http://learningsys.org/nips17/assets/papers/paper_16.pdf.
- Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces. The Journal of Chemical Physics, 89(4):2185–2192, 1988. doi:10.1063/1.455063.
- On the structure of time-delay embedding in linear models of non-linear dynamical systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, 30(7), 2020. doi:10.1063/5.0010886.
- Simulating electron dynamics of complex molecules with time-dependent complete active space configuration interaction. Journal of Chemical Theory and Computation, 14(8):4129–4138, 2018. doi:10.1021/acs.jctc.8b00381.
- Peak-shifting in real-time time-dependent density functional theory. Journal of Chemical Theory and Computation, 11(10):4791–4802, 2015. PMID: 26574268. doi:10.1021/acs.jctc.5b00559.
- Size-dependent errors in real-time electron density propagation. The Journal of Chemical Physics, 158(17):174102, 05 2023. doi:10.1063/5.0142515.
- Excited-State Properties and Dynamics. In Miguel A.L. Marques, Neepa T. Maitra, Fernando M.S. Nogueira, E.K.U. Gross, and Angel Rubio, editors, Fundamentals of Time-Dependent Density Functional Theory, pages 317–336. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. doi:10.1007/978-3-642-23518-4_16.
- A complete active space scf method (casscf) using a density matrix formulated super-CI approach. Chemical Physics, 48(2):157–173, 1980. doi:10.1016/0301-0104(80)80045-0.
- Density-functional theory for time-dependent systems. Physical Review Letters, 52(12):997, 1984. doi:10.1103/PhysRevLett.52.997.
- Time-dependent complete-active-space self-consistent-field method for multielectron dynamics in intense laser fields. Phys. Rev. A, 88:023402, Aug 2013. doi:10.1103/PhysRevA.88.023402.
- Dimension reduction by balanced truncation: Application to light-induced control of open quantum systems. The Journal of Chemical Physics, 135(1):014112, 07 2011. doi:10.1063/1.3605243.
- Machine learning exchange-correlation potential in time-dependent density-functional theory. Phys. Rev. A, 101:050501, May 2020. doi:10.1103/PhysRevA.101.050501.
- Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Dover Publications, 2012. “Unabridged, unaltered republication of the ‘First Edition, Revised, originally published by McGraw-Hill, New York in 1989”.
- Floris Takens. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick 1980, pages 366–381. Springer, 1981. doi:10.1007/BFb0091924.
- Carsten Ullrich. Time-Dependent Density-Functional Theory: Concepts and Applications. Oxford Graduate Texts. Oxford University Press, Oxford, 2012. doi:10.1093/acprof:oso/9780199563029.001.0001.
- Fuzhen Zhang. The Schur Complement and Its Applications. Springer US, New York, NY, First edition, 2005. doi:10.1007/b105056.
- Robert Zwanzig. Memory effects in irreversible thermodynamics. Phys. Rev., 124:983–992, Nov 1961. doi:10.1103/PhysRev.124.983.
- Robert Zwanzig. On the identity of three generalized master equations. Physica, 30(6):1109–1123, 1964. doi:10.1016/0031-8914(64)90102-8.