Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Dual Covariance Steering with Active Parameter Estimation (2403.15590v1)

Published 22 Mar 2024 in eess.SY and cs.SY

Abstract: This work examines the optimal covariance steering problem for systems subject to unknown parameters that enter multiplicatively with the state and control, in addition to additive disturbances. In contrast to existing works, the unknown parameters are modeled as random variables and are estimated online. This work proposes the utilization of recursive least squares estimation for efficient parameter identification. A dual control problem is formulated in which the effect of the planned control policy on the parameter estimates is modeled and optimized for. The parameter estimates are then used to modify the pre-computed control policy online in an adaptive control fashion. Finally, the proposed approach is demonstrated in a vehicle control example with closed-loop parameter identification.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. M. Goldshtein and P. Tsiotras, “Finite-horizon covariance control of linear time-varying systems,” in IEEE 56th Annual Conference on Decision and Control (CDC), Melbourne, Australia, Dec. 12–15, 2017, pp. 3606–3611.
  2. Y. Chen, T. T. Georgiou, and M. Pavon, “Optimal steering of a linear stochastic system to a final probability distribution, part I,” IEEE Transactions on Automatic Control, vol. 61, no. 5, pp. 1158–1169, 2015.
  3. ——, “Optimal steering of a linear stochastic system to a final probability distribution, part II,” IEEE Transactions on Automatic Control, vol. 61, no. 5, pp. 1170–1180, 2015.
  4. ——, “Optimal steering of a linear stochastic system to a final probability distribution—part III,” IEEE Transactions on Automatic Control, vol. 63, no. 9, pp. 3112–3118, 2018.
  5. K. Okamoto and P. Tsiotras, “Optimal stochastic vehicle path planning using covariance steering,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2276–2281, 2019.
  6. D. Zheng, J. Ridderhof, P. Tsiotras, and A. Agha-mohammadi, “Belief space planning: A covariance steering approach,” in International Conference on Robotics and Automation, Philadelphia, PA, May 23–27, 2022, pp. 11 051–11 057.
  7. Y. Chen, T. T. Georgiou, and M. Pavon, “Covariance steering in zero-sum linear-quadratic two-player differential games,” in IEEE 58th Conference on Decision and Control (CDC), Nice, France, Dec. 11–13, 2019, pp. 8204–8209.
  8. J. Ridderhof and P. Tsiotras, “Uncertainty quantification and control during mars powered descent and landing using covariance steering,” in AIAA Guidance, Navigation, and Control Conference, Kissimmee, FL, Jan. 8–12, 2018, p. 0611.
  9. R. Goyal, M. Majji, and R. E. Skelton, “Optimal actuator/sensor precision for covariance steering with soft convex constraints on state and control,” in IEEE American Control Conference, New Orleans, LA, May 25–28, 2021, pp. 5015–5022.
  10. J. Ridderhof and P. Tsiotras, “Chance-constrained covariance steering in a Gaussian random field via successive convex programming,” Journal of Guidance, Control, and Dynamics, vol. 45, no. 4, pp. 599–610, 2022.
  11. B. Benedikter, A. Zavoli, Z. Wang, S. Pizzurro, and E. Cavallini, “Convex approach to covariance control with application to stochastic low-thrust trajectory optimization,” Journal of Guidance, Control, and Dynamics, vol. 45, no. 11, pp. 2061–2075, 2022.
  12. ——, “Covariance control for stochastic low-thrust trajectory optimization,” in AIAA SCITECH 2022 Forum, San Diego, CA, Jan. 3–7, 2022, p. 2474.
  13. F. Liu and P. Tsiotras, “Optimal covariance steering for continuous-time linear stochastic systems with additive generic noise,” arXiv preprint arXiv:2206.11201, 2022.
  14. J. Ridderhof, K. Okamoto, and P. Tsiotras, “Nonlinear uncertainty control with iterative covariance steering,” in IEEE 58th Conference on Decision and Control (CDC), Nice, France, Dec. 11–13, 2019, pp. 3484–3490.
  15. Y. Chen, “Covariance steering for nonlinear control-affine systems,” arXiv preprint arXiv:2108.09530, 2021.
  16. F. Liu and P. Tsiotras, “Optimal covariance steering for continuous-time linear stochastic systems with multiplicative noise,” arXiv preprint arXiv:2206.11735, 2022.
  17. J. W. Knaup and P. Tsiotras, “Computationally efficient covariance steering for systems subject to parametric disturbances and chance constraints,” in IEEE 62nd Conference on Decision and Control (CDC), Singapore, Dec. 13–15, 2023, pp. 1796–1801.
  18. I. M. Balci and E. Bakolas, “Covariance steering of discrete-time linear systems with mixed multiplicative and additive noise,” in IEEE American Control Conference (ACC), San Diego, CA, May 31–June 2, 2023, pp. 2586–2591.
  19. J. W. Knaup and P. Tsiotras, “Covariance steering for systems subject to unknown parameters,” in IEEE 62nd Conference on Decision and Control (CDC), Singapore, Dec. 13–15, 2023, pp. 1790–1795.
  20. R. Soloperto, J. Köhler, M. A. Müller, and F. Allgöwer, “Dual adaptive mpc for output tracking of linear systems,” in IEEE 58th Conference on Decision and Control (CDC), Nice, France, Dec. 11–13, 2019, pp. 1377–1382.
  21. N. M. Filatov and H. Unbehauen, “Survey of adaptive dual control methods,” IEE Proceedings-Control Theory and Applications, vol. 147, no. 1, pp. 118–128, 2000.
  22. A. Mesbah, “Stochastic model predictive control with active uncertainty learning: A survey on dual control,” Annual Reviews in Control, vol. 45, pp. 107–117, 2018.
  23. H. Unbehauen, “Adaptive dual control systems: a survey,” in Proceedings of the IEEE Adaptive Systems for Signal Processing, Communications, and Control Symposium, Lake Louise, AB, Canada, Oct. 4, 2000, pp. 171–180.
  24. Y. Bar-Shalom and E. Tse, “Dual effect, certainty equivalence, and separation in stochastic control,” IEEE Transactions on Automatic Control, vol. 19, no. 5, pp. 494–500, 1974.
  25. D. Seborg, T. F. Edgar, and S. Shah, “Adaptive control strategies for process control: a survey,” AIChE Journal, vol. 32, no. 6, pp. 881–913, 1986.
  26. R. Isermann, “Parameter adaptive control algorithms—a tutorial,” Automatica, vol. 18, no. 5, pp. 513–528, 1982.
  27. S. A. U. Islam and D. S. Bernstein, “Recursive least squares for real-time implementation [lecture notes],” IEEE Control Systems Magazine, vol. 39, no. 3, pp. 82–85, 2019.
  28. Y. Liu and F. Ding, “Convergence properties of the least squares estimation algorithm for multivariable systems,” Applied Mathematical Modelling, vol. 37, no. 1-2, pp. 476–483, 2013.
  29. G. Rapakoulias and P. Tsiotras, “Discrete-time optimal covariance steering via semidefinite programming,” in IEEE 62nd Conference on Decision and Control (CDC), Singapore, Dec. 13–15, 2023, pp. 1802–1807.
  30. T. Lew, R. Bonalli, and M. Pavone, “Sample average approximation for stochastic programming with equality constraints,” arXiv preprint arXiv:2206.09963, 2022.
  31. J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “CasADi – A software framework for nonlinear optimization and optimal control,” Mathematical Programming Computation, vol. 11, no. 1, pp. 1–36, 2019.
  32. A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,” Mathematical programming, vol. 106, pp. 25–57, 2006.

Summary

We haven't generated a summary for this paper yet.