Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cross-user activity recognition using deep domain adaptation with temporal relation information (2403.15424v1)

Published 12 Mar 2024 in eess.SP, cs.AI, cs.CV, cs.HC, and cs.LG

Abstract: Human Activity Recognition (HAR) is a cornerstone of ubiquitous computing, with promising applications in diverse fields such as health monitoring and ambient assisted living. Despite significant advancements, sensor-based HAR methods often operate under the assumption that training and testing data have identical distributions. However, in many real-world scenarios, particularly in sensor-based HAR, this assumption is invalidated by out-of-distribution ($\displaystyle o.o.d.$) challenges, including differences from heterogeneous sensors, change over time, and individual behavioural variability. This paper centres on the latter, exploring the cross-user HAR problem where behavioural variability across individuals results in differing data distributions. To address this challenge, we introduce the Deep Temporal State Domain Adaptation (DTSDA) model, an innovative approach tailored for time series domain adaptation in cross-user HAR. Contrary to the common assumption of sample independence in existing domain adaptation approaches, DTSDA recognizes and harnesses the inherent temporal relations in the data. Therefore, we introduce 'Temporal State', a concept that defined the different sub-activities within an activity, consistent across different users. We ensure these sub-activities follow a logical time sequence through 'Temporal Consistency' property and propose the 'Pseudo Temporal State Labeling' method to identify the user-invariant temporal relations. Moreover, the design principle of DTSDA integrates adversarial learning for better domain adaptation. Comprehensive evaluations on three HAR datasets demonstrate DTSDA's superior performance in cross-user HAR applications by briding individual behavioral variability using temporal relations across sub-activities.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. Z. Hussain, Q. Z. Sheng, and W. E. Zhang, “A review and categorization of techniques on device-free human activity recognition,” Journal of Network and Computer Applications, vol. 167, p. 102738, 2020.
  2. S. K. Yadav, K. Tiwari, H. M. Pandey, and S. A. Akbar, “A review of multimodal human activity recognition with special emphasis on classification, applications, challenges and future directions,” Knowledge-Based Systems, vol. 223, p. 106970, 2021.
  3. K. Chen, D. Zhang, L. Yao, B. Guo, Z. Yu, and Y. Liu, “Deep learning for sensor-based human activity recognition: Overview, challenges, and opportunities,” ACM Computing Surveys (CSUR), vol. 54, no. 4, pp. 1–40, 2021.
  4. T. Xing, S. S. Sandha, B. Balaji, S. Chakraborty, and M. Srivastava, “Enabling edge devices that learn from each other: Cross modal training for activity recognition,” in Proceedings of the 1st International Workshop on Edge Systems, Analytics and Networking, 2018, pp. 37–42.
  5. J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang, “Learning under concept drift: A review,” IEEE transactions on knowledge and data engineering, vol. 31, no. 12, pp. 2346–2363, 2018.
  6. R. Saeedi, K. Sasani, S. Norgaard, and A. H. Gebremedhin, “Personalized human activity recognition using wearables: A manifold learning-based knowledge transfer,” in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).   IEEE, 2018, pp. 1193–1196.
  7. S. A. Rokni and H. Ghasemzadeh, “Autonomous training of activity recognition algorithms in mobile sensors: A transfer learning approach in context-invariant views,” IEEE Transactions on Mobile Computing, vol. 17, no. 8, pp. 1764–1777, 2018.
  8. S. Sukhija and N. C. Krishnan, “Supervised heterogeneous feature transfer via random forests,” Artificial Intelligence, vol. 268, pp. 30–53, 2019.
  9. A. Farahani, S. Voghoei, K. Rasheed, and H. R. Arabnia, “A brief review of domain adaptation,” Advances in data science and information engineering: proceedings from ICDATA 2020 and IKE 2020, pp. 877–894, 2021.
  10. H. Yan, Y. Ding, P. Li, Q. Wang, Y. Xu, and W. Zuo, “Mind the class weight bias: Weighted maximum mean discrepancy for unsupervised domain adaptation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 2272–2281.
  11. B. Sun, J. Feng, and K. Saenko, “Return of frustratingly easy domain adaptation,” in Proceedings of the AAAI conference on artificial intelligence, vol. 30, no. 1, 2016.
  12. S. Li, M. Xie, K. Gong, C. H. Liu, Y. Wang, and W. Li, “Transferable semantic augmentation for domain adaptation,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 11 516–11 525.
  13. S. Li, B. Xie, J. Wu, Y. Zhao, C. H. Liu, and Z. Ding, “Simultaneous semantic alignment network for heterogeneous domain adaptation,” in Proceedings of the 28th ACM international conference on multimedia, 2020, pp. 3866–3874.
  14. G. Wilson, J. R. Doppa, and D. J. Cook, “Multi-source deep domain adaptation with weak supervision for time-series sensor data,” in Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, 2020, pp. 1768–1778.
  15. W. Zhang, X. Li, H. Ma, Z. Luo, and X. Li, “Universal domain adaptation in fault diagnostics with hybrid weighted deep adversarial learning,” IEEE Transactions on Industrial Informatics, vol. 17, no. 12, pp. 7957–7967, 2021.
  16. A. Lentzas and D. Vrakas, “Non-intrusive human activity recognition and abnormal behavior detection on elderly people: A review,” Artificial Intelligence Review, vol. 53, no. 3, pp. 1975–2021, 2020.
  17. L. Zhang, W. Cui, B. Li, Z. Chen, M. Wu, and T. S. Gee, “Privacy-preserving cross-environment human activity recognition,” IEEE Transactions on Cybernetics, 2021.
  18. J. Roche, V. De-Silva, J. Hook, M. Moencks, and A. Kondoz, “A multimodal data processing system for lidar-based human activity recognition,” IEEE Transactions on Cybernetics, vol. 52, no. 10, pp. 10 027–10 040, 2021.
  19. T.-Y. Pan, W.-L. Tsai, C.-Y. Chang, C.-W. Yeh, and M.-C. Hu, “A hierarchical hand gesture recognition framework for sports referee training-based emg and accelerometer sensors,” IEEE Transactions on Cybernetics, vol. 52, no. 5, pp. 3172–3183, 2020.
  20. R. Sekiguchi, K. Abe, T. Yokoyama, M. Kumano, and M. Kawakatsu, “Ensemble learning for human activity recognition,” in Adjunct proceedings of the 2020 ACM international joint conference on pervasive and ubiquitous computing and proceedings of the 2020 ACM international symposium on wearable computers, 2020, pp. 335–339.
  21. M. M. H. Shuvo, N. Ahmed, K. Nouduri, and K. Palaniappan, “A hybrid approach for human activity recognition with support vector machine and 1d convolutional neural network,” in 2020 IEEE Applied Imagery Pattern Recognition Workshop (AIPR).   IEEE, 2020, pp. 1–5.
  22. H. Liu, Y. Hartmann, and T. Schultz, “Motion units: Generalized sequence modeling of human activities for sensor-based activity recognition,” in 2021 29th European signal processing conference (EUSIPCO).   IEEE, 2021, pp. 1506–1510.
  23. F. Duan, T. Zhu, J. Wang, L. Chen, H. Ning, and Y. Wan, “A multi-task deep learning approach for sensor-based human activity recognition and segmentation,” IEEE Transactions on Instrumentation and Measurement, 2023.
  24. W. Lu, J. Wang, X. Sun, Y. Chen, and X. Xie, “Out-of-distribution representation learning for time series classification,” in The Eleventh International Conference on Learning Representations, 2022.
  25. F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He, “A comprehensive survey on transfer learning,” Proceedings of the IEEE, vol. 109, no. 1, pp. 43–76, 2020.
  26. G. Wilson and D. J. Cook, “A survey of unsupervised deep domain adaptation,” ACM Transactions on Intelligent Systems and Technology (TIST), vol. 11, no. 5, pp. 1–46, 2020.
  27. M. Jing, J. Zhao, J. Li, L. Zhu, Y. Yang, and H. T. Shen, “Adaptive component embedding for domain adaptation,” IEEE transactions on cybernetics, vol. 51, no. 7, pp. 3390–3403, 2020.
  28. S. Yang, K. Yu, F. Cao, H. Wang, and X. Wu, “Dual-representation-based autoencoder for domain adaptation,” IEEE Transactions on Cybernetics, vol. 52, no. 8, pp. 7464–7477, 2021.
  29. R. Flamary, N. Courty, D. Tuia, and A. Rakotomamonjy, “Optimal transport for domain adaptation,” IEEE Trans. Pattern Anal. Mach. Intell, vol. 1, pp. 1–40, 2016.
  30. W. Lu, Y. Chen, J. Wang, and X. Qin, “Cross-domain activity recognition via substructural optimal transport,” Neurocomputing, vol. 454, pp. 65–75, 2021.
  31. Z. Gao, Y. Zhao, H. Zhang, D. Chen, A.-A. Liu, and S. Chen, “A novel multiple-view adversarial learning network for unsupervised domain adaptation action recognition,” IEEE Transactions on Cybernetics, vol. 52, no. 12, pp. 13 197–13 211, 2021.
  32. Y. Qin, Q. Qian, J. Luo, and H. Pu, “Deep joint distribution alignment: A novel enhanced-domain adaptation mechanism for fault transfer diagnosis,” IEEE Transactions on Cybernetics, 2022.
  33. J. Yang, J. Yang, S. Wang, S. Cao, H. Zou, and L. Xie, “Advancing imbalanced domain adaptation: Cluster-level discrepancy minimization with a comprehensive benchmark,” IEEE Transactions on Cybernetics, 2021.
  34. G. Uslu and S. Baydere, “A segmentation scheme for knowledge discovery in human activity spotting,” IEEE Transactions on Cybernetics, vol. 52, no. 7, pp. 5668–5681, 2022.
  35. D. Hallac, S. Vare, S. Boyd, and J. Leskovec, “Toeplitz inverse covariance-based clustering of multivariate time series data,” in Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, 2017, pp. 215–223.
  36. D. Hallac, P. Nystrup, and S. Boyd, “Greedy gaussian segmentation of multivariate time series,” Advances in Data Analysis and Classification, vol. 13, no. 3, pp. 727–751, 2019.
  37. Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and V. Lempitsky, “Domain-adversarial training of neural networks,” The journal of machine learning research, vol. 17, no. 1, pp. 2096–2030, 2016.
  38. M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep clustering for unsupervised learning of visual features,” in Proceedings of the European conference on computer vision (ECCV), 2018, pp. 132–149.
  39. R. Chavarriaga, H. Sagha, A. Calatroni, S. T. Digumarti, G. Tröster, J. d. R. Millán, and D. Roggen, “The opportunity challenge: A benchmark database for on-body sensor-based activity recognition,” Pattern Recognition Letters, vol. 34, no. 15, pp. 2033–2042, 2013.
  40. A. Reiss and D. Stricker, “Introducing a new benchmarked dataset for activity monitoring,” in 2012 16th international symposium on wearable computers.   IEEE, 2012, pp. 108–109.
  41. B. Barshan and M. C. Yüksek, “Recognizing daily and sports activities in two open source machine learning environments using body-worn sensor units,” The Computer Journal, vol. 57, no. 11, pp. 1649–1667, 2014.
  42. G. Wang, Q. Li, L. Wang, W. Wang, M. Wu, and T. Liu, “Impact of sliding window length in indoor human motion modes and pose pattern recognition based on smartphone sensors,” Sensors, vol. 18, no. 6, p. 1965, 2018.
  43. B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars, “Unsupervised visual domain adaptation using subspace alignment,” in Proceedings of the IEEE international conference on computer vision, 2013, pp. 2960–2967.
  44. S. A. Rokni, M. Nourollahi, and H. Ghasemzadeh, “Personalized human activity recognition using convolutional neural networks,” in Proceedings of the AAAI conference on artificial intelligence, vol. 32, no. 1, 2018.
Citations (1)

Summary

We haven't generated a summary for this paper yet.