Predicting Parkinson's disease trajectory using clinical and functional MRI features: a reproduction and replication study (2403.15405v2)
Abstract: Parkinson's disease (PD) is a common neurodegenerative disorder with a poorly understood physiopathology and no established biomarkers for the diagnosis of early stages and for prediction of disease progression. Several neuroimaging biomarkers have been studied recently, but these are susceptible to several sources of variability. In this context, an evaluation of the robustness of such biomarkers is essential. This study is part of a larger project investigating the replicability of potential neuroimaging biomarkers of PD. Here, we attempt to reproduce (same data, same method) and replicate (different data or method) the models described in Nguyen et al., 2021 to predict individual's PD current state and progression using demographic, clinical and neuroimaging features (fALFF and ReHo extracted from resting-state fMRI). We use the Parkinson's Progression Markers Initiative dataset (PPMI, ppmi-info.org), as in Nguyen et al.,2021 and aim to reproduce the original cohort, imaging features and machine learning models as closely as possible using the information available in the paper and the code. We also investigated methodological variations in cohort selection, feature extraction pipelines and sets of input features. The success of the reproduction was assessed using different criteria. Notably, we obtained significantly better than chance performance using the analysis pipeline closest to that in the original study (R2 > 0), which is consistent with its findings. The challenges encountered while reproducing and replicating the original work are likely explained by the complexity of neuroimaging studies, in particular in clinical settings. We provide recommendations to further facilitate the reproducibility of such studies in the future.
- Predicting Parkinson’s disease trajectory using clinical and neuroimaging baseline measures. Parkinsonism & Related Disorders, 85:44–51, 2021. ISSN 1353-8020. doi: 10.1016/j.parkreldis.2021.02.026.
- Parkinson’s disease. The Lancet, 397(10291):2284–2303, 2021. ISSN 0140-6736. doi: 10.1016/S0140-6736(21)00218-X.
- Parkinson’s disease biomarkers: perspective from the NINDS Parkinson’s Disease Biomarkers Program. Biomarkers in Medicine, 11(6):451–473, 2017. ISSN 1752-0363. doi: 10.2217/bmm-2016-0370.
- Emerging Neuroimaging Biomarkers Across Disease Stage in Parkinson Disease: A Review. JAMA Neurology, 78(10):1262–1272, 2021. ISSN 2168-6149. doi: 10.1001/jamaneurol.2021.1312. URL https://doi.org/10.1001/jamaneurol.2021.1312.
- Magnetic Resonance Imaging Markers for Cognitive Impairment in Parkinson’s Disease: Current View. Frontiers in Aging Neuroscience, 14, 2022. ISSN 1663-4365. doi: 10.3389/fnagi.2022.788846.
- Molecular nexopathies: a new paradigm of neurodegenerative disease. Trends in Neurosciences, 36(10):561–569, 2013. ISSN 0166-2236. doi: 10.1016/j.tins.2013.06.007.
- Prediction of individual clinical scores in patients with Parkinson’s disease using resting-state functional magnetic resonance imaging. Journal of the Neurological Sciences, 366:27–32, 2016. ISSN 0022-510X. doi: 10.1016/j.jns.2016.04.030.
- Amplitude of Low-frequency Oscillations in Parkinson’s Disease: A 2-year Longitudinal Resting-state Functional Magnetic Resonance Imaging Study. Chinese Medical Journal, 128(05):593–601, 2015. doi: 10.4103/0366-6999.151652.
- Use of machine learning method on automatic classification of motor subtype of Parkinson’s disease based on multilevel indices of rs-fMRI. Parkinsonism & Related Disorders, 90:65–72, 2021. ISSN 1353-8020. doi: 10.1016/j.parkreldis.2021.08.003.
- Regional homogeneity changes in patients with Parkinson’s disease. Human Brain Mapping, 30(5):1502–1510, 2009. ISSN 1097-0193. doi: 10.1002/hbm.20622.
- ALFF and ReHo Mapping Reveals Different Functional Patterns in Early- and Late-Onset Parkinson’s Disease. Frontiers in Neuroscience, 14, 2020. ISSN 1662-453X. doi: doi.org/10.3389/fnins.2020.00141.
- Regional homogeneity approach to fMRI data analysis. NeuroImage, 22(1):394–400, 2004. ISSN 1053-8119. doi: 10.1016/j.neuroimage.2003.12.030.
- An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF. Journal of Neuroscience Methods, 172(1):137–141, 2008. ISSN 0165-0270. doi: 10.1016/j.jneumeth.2008.04.012.
- False-Positive Psychology: Undisclosed Flexibility in Data Collection and Analysis Allows Presenting Anything as Significant. Psychological Science, 22(11):1359–1366, 2011. ISSN 0956-7976, 1467-9280. doi: 10.1177/0956797611417632.
- Exploring the impact of analysis software on task fMRI results. Human Brain Mapping, 40(11):3362–3384, 2019. ISSN 1065-9471, 1097-0193. doi: 10.1002/hbm.24603. Number: 11.
- Variability in the analysis of a single neuroimaging dataset by many teams. Nature, 582(7810):84–88, 2020. doi: https://doi.org/10.1038/s41586-020-2314-9.
- Reproducibility of neuroimaging analyses across operating systems. Frontiers in Neuroinformatics, 9, 2015. ISSN 1662-5196. doi: 10.3389/fninf.2015.00012.
- The effects of freesurfer version, workstation type, and macintosh operating system version on anatomical volume and cortical thickness measurements. PloS one, 7(6):e38234, 2012.
- Leakage and the Reproducibility Crisis in ML-based Science, 2022.
- Evaluating Machine Learning Models and Their Diagnostic Value. In Machine Learning for Brain Disorders, Neuromethods, pages 601–630. Springer US, 2023. ISBN 978-1-07-163195-9. doi: 10.1007/978-1-0716-3195-9˙20. URL https://doi.org/10.1007/978-1-0716-3195-9_20.
- Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation. Medical Image Analysis, 63:101694, 2020. ISSN 1361-8415. doi: 10.1016/j.media.2020.101694. URL https://www.sciencedirect.com/science/article/pii/S1361841520300591.
- Lorena A. Barba. Terminologies for reproducible research, 2018.
- The heterogeneity of Parkinson’s disease. Journal of Neural Transmission, 130(6):827–838, 2023. ISSN 0300-9564. doi: 10.1007/s00702-023-02635-4.
- Comparing the vibration of effects due to model, data pre-processing and sampling uncertainty on a large data set in personality psychology. Meta-Psychology, 7, 2023.
- Scanning the horizon: towards transparent and reproducible neuroimaging research. Nature Reviews Neuroscience, 18(2):115–126, 2017. ISSN 1471-003X, 1471-0048. doi: 10.1038/nrn.2016.167. URL http://www.nature.com/articles/nrn.2016.167. Number: 2.
- The Parkinson’s progression markers initiative (PPMI) - establishing a PD biomarker cohort. Annals of clinical and translational neurology, 5(12):1460–1477, 2018. ISSN 2328-9503. doi: 10.1002/acn3.644.
- SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.
- The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Scientific Data, 3(1):160044, 2016. ISSN 2052-4463. doi: 10.1038/sdata.2016.44.
- nipy/heudiconv: v0.13.1. doi: 10.5281/zenodo.7963413. https://zenodo.org/records/7963413.
- FSL. NeuroImage, 62(2):782–790, 2012. ISSN 1095-9572(Electronic),1053-8119(Print). doi: 10.1016/j.neuroimage.2011.09.015.
- Robert W. Cox. AFNI: Software for Analysis and Visualization of Functional Magnetic Resonance Neuroimages. Computers and Biomedical Research, 29(3):162–173, 1996. ISSN 0010-4809. doi: 10.1006/cbmr.1996.0014.
- A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage, 54(3):2033–2044, 2011. ISSN 1053-8119. doi: 10.1016/j.neuroimage.2010.09.025.
- ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data. NeuroImage, 112:267–277, 2015. ISSN 1053-8119. doi: 10.1016/j.neuroimage.2015.02.064.
- Krzysztof Gorgolewski. Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python. Frontiers in Neuroinformatics, page 15, 2017. doi: 10.5281/zenodo.581704.
- Neurodocker. URL https://github.com/ReproNim/neurodocker.
- Anaconda software distribution. Anaconda Documentation, 2020. https://docs.anaconda.com/.
- Boutiques: a flexible framework for automated application integration in computing platforms, 2017.
- Elodie Germani. Image processing, 2023a. URL https://doi.org/10.5281/zenodo.10298335.
- Elodie Germani. Trainer, 2023b. URL https://doi.org/10.5281/zenodo.10298359.
- ICA-AROMA & fmriprep using child template - fmriprep - Neurostars. URL https://neurostars.org/t/ica-aroma-fmriprep-using-child-template/5139.
- Machine learning for neuroimaging with scikit-learn. Frontiers in Neuroinformatics, 8:14, 2014. ISSN 1662-5196. doi: 10.3389/fninf.2014.00014.
- fMRIPrep: a robust preprocessing pipeline for functional MRI. Nature Methods, 16(1):111–116, 2019. ISSN 1548-7105. doi: 10.1038/s41592-018-0235-4.
- Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage, 84:320–341, 2014. ISSN 1053-8119. doi: 10.1016/j.neuroimage.2013.08.048. URL https://www.sciencedirect.com/science/article/pii/S1053811913009117.
- An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI. NeuroImage, 171:415–436, 2018. ISSN 1053-8119. doi: 10.1016/j.neuroimage.2017.12.073. URL https://www.sciencedirect.com/science/article/pii/S1053811917310972.
- Towards Automated Analysis of Connectomes: The Configurable Pipeline for the Analysis of Connectomes (C-PAC). Frontiers in Neuroinformatics, 7, 2013. ISSN 1662-5196. doi: 10.3389/conf.fninf.2013.09.00042.
- Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI. Cerebral Cortex, 28(9):3095–3114, September 2018. ISSN 1047-3211. doi: 10.1093/cercor/bhx179.
- Multi-level bootstrap analysis of stable clusters in resting-state fMRI. NeuroImage, 51(3):1126–1139, 2010. ISSN 1053-8119. doi: 10.1016/j.neuroimage.2010.02.082.
- A probabilistic MR atlas of the human cerebellum. NeuroImage, 46(1):39–46, 2009. ISSN 1053-8119. doi: 10.1016/j.neuroimage.2009.01.045.
- Connectivity-Based Functional Analysis of Dopamine Release in the Striatum Using Diffusion-Weighted MRI and Positron Emission Tomography. Cerebral Cortex, 24(5):1165–1177, 2014. ISSN 1047-3211. doi: 10.1093/cercor/bhs397.
- Automated anatomical labelling atlas 3. NeuroImage, 206:116189, 2020. ISSN 1053-8119. doi: 10.1016/j.neuroimage.2019.116189. URL https://www.sciencedirect.com/science/article/pii/S1053811919307803.
- Power failure: why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14(5):365–376, 2013. ISSN 1471-003X, 1471-0048. doi: 10.1038/nrn3475. URL http://www.nature.com/articles/nrn3475.
- John P. A. Ioannidis. Why Most Discovered True Associations Are Inflated:. Epidemiology, 19(5):640–648, 2008. ISSN 1044-3983. doi: 10.1097/EDE.0b013e31818131e7. URL http://journals.lww.com/00001648-200809000-00002.
- DataLad: distributed system for joint management of code, data, and their relationship. Journal of Open Source Software, 6(63):3262, 2021. ISSN 2475-9066. doi: 10.21105/joss.03262. URL https://joss.theoj.org/papers/10.21105/joss.03262.
- The OpenNeuro resource for sharing of neuroscience data. eLife, 10:e71774, 2021. ISSN 2050-084X. doi: 10.7554/eLife.71774. URL https://doi.org/10.7554/eLife.71774.
- Joshua Carp. On the plurality of (methodological) worlds: estimating the analytic flexibility of fMRI experiments. Frontiers in Neuroscience, page 13, 2012.
- Best practices in data analysis and sharing in neuroimaging using MRI. Nature Neuroscience, 20(3):299–303, 2017. ISSN 1097-6256, 1546-1726. doi: 10.1038/nn.4500. URL http://www.nature.com/articles/nn.4500.
- Software heritage: Why and how to preserve software source code. In iPRES 2017: 14th International Conference on Digital Preservation, 2017. URL https://www.softwareheritage.org/wp-content/uploads/2020/01/ipres-2017-swh.pdfhttps://hal.archives-ouvertes.fr/hal-01590958.
- Building the universal archive of source code. Communications of the ACM, 61(10):29–31, 2018. ISSN 0001-0782. doi: 10.1145/3183558. URL https://cacm.acm.org/magazines/2018/10/231366-building-the-universal-archive-of-source-code/fulltext.
- NeuroVault.org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain. Frontiers in Neuroinformatics, 9, 2015. ISSN 1662-5196. doi: 10.3389/fninf.2015.00008. URL https://www.frontiersin.org/article/10.3389/fninf.2015.00008.
- Bids apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods. PLoS computational biology, 13(3):e1005209, 2017.
- Nested cross-validation when selecting classifiers is overzealous for most practical applications, 2018. URL http://arxiv.org/abs/1809.09446.
- Jupyter notebooks – a publishing format for reproducible computational workflows. In F. Loizides and B. Schmidt, editors, Positioning and Power in Academic Publishing: Players, Agents and Agendas, pages 87 – 90. IOS Press, 2016.
- Beyond advertising: New infrastructures for publishing integrated research objects. PLOS Computational Biology, 18(1):e1009651, 2022. doi: 10.1371/journal.pcbi.1009651. URL https://doi.org/10.1371/journal.pcbi.1009651.