Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Modular, End-to-End Next-Generation Network Testbed: Towards a Fully Automated Network Management Platform (2403.15376v1)

Published 22 Mar 2024 in cs.NI

Abstract: Experimentation in practical, end-to-end (E2E) next-generation networks deployments is becoming increasingly prevalent and significant in the realm of modern networking and wireless communications research. The prevalence of fifth-generation technology (5G) testbeds and the emergence of developing networks systems, for the purposes of research and testing, focus on the capabilities and features of analytics, intelligence, and automated management using novel testbed designs and architectures, ranging from simple simulations and setups to complex networking systems; however, with the ever-demanding application requirements for modern and future networks, 5G-and-beyond (denoted as 5G+) testbed experimentation can be useful in assessing the creation of large-scale network infrastructures that are capable of supporting E2E virtualized mobile network services. To this end, this paper presents a functional, modular E2E 5G+ system, complete with the integration of a Radio Access Network (RAN) and handling the connection of User Equipment (UE) in real-world scenarios. As well, this paper assesses and evaluates the effectiveness of emulating full network functionalities and capabilities, including a complete description of user-plane data, from UE registrations to communications sequences, and leads to the presentation of a future outlook in powering new experimentation for 6G and next-generation networks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (74)
  1. T. Hoeschele, F. Kaltenberger, A. I. Grohmann, E. Tasdemir, M. Reisslein, and F. H. Fitzek, “5g interoperability of open ran components in large testbed ecosystem: Towards 6g flexibility,” in European Wireless 2022; 27th European Wireless Conference.   VDE, 2022, pp. 1–6.
  2. E. Pateromichelakis, F. Moggio, C. Mannweiler, P. Arnold, M. Shariat, M. Einhaus, Q. Wei, Ö. Bulakci, and A. De Domenico, “End-to-end data analytics framework for 5g architecture,” IEEE Access, vol. 7, pp. 40 295–40 312, 2019.
  3. X. Li, A. Garcia-Saavedra, X. Costa-Perez, C. J. Bernardos, C. Guimarães, K. Antevski, J. Mangues-Bafalluy, J. Baranda, E. Zeydan, D. Corujo et al., “5growth: An end-to-end service platform for automated deployment and management of vertical services over 5g networks,” IEEE Communications Magazine, vol. 59, no. 3, pp. 84–90, 2021.
  4. N. Alliance, “5g end-to-end architecture framework,” Tech. Rep., pp. 04–0ct, 2017.
  5. H. Hawilo, M. Jammal, and A. Shami, “Network function virtualization-aware orchestrator for service function chaining placement in the cloud,” IEEE Journal on Selected Areas in Communications, vol. 37, no. 3, pp. 643–655, 2019.
  6. A. Moubayed, A. Shami, P. Heidari, A. Larabi, and R. Brunner, “Edge-enabled v2x service placement for intelligent transportation systems,” IEEE Transactions on Mobile Computing, vol. 20, no. 4, pp. 1380–1392, 2021.
  7. M. Yang, Y. Li, B. Li, D. Jin, and S. Chen, “Service-oriented 5g network architecture: an end-to-end software defining approach,” International Journal of Communication Systems, vol. 29, no. 10, pp. 1645–1657, 2016.
  8. M. Liyanage, Q.-V. Pham, K. Dev, S. Bhattacharya, P. K. R. Maddikunta, T. R. Gadekallu, and G. Yenduri, “A survey on zero touch network and service management (zsm) for 5g and beyond networks,” Journal of Network and Computer Applications, vol. 203, p. 103362, 2022.
  9. I. Ashraf, Y. B. Zikria, S. Garg, Y. Park, G. Kaddoum, and S. Singh, “Zero touch networks to realize virtualization: Opportunities, challenges, and future prospects,” IEEE Network, vol. 36, no. 6, pp. 251–259, 2022.
  10. F. Gringoli, P. Patras, C. Donato, P. Serrano, and Y. Grunenberger, “Performance assessment of open software platforms for 5g prototyping,” IEEE Wireless Communications, vol. 25, no. 5, pp. 10–15, 2018.
  11. C.-C. Tsai, F. J. Lin, and H. Tanaka, “Evaluation of 5g core slicing on user plane function,” Communications and Network, vol. 13, no. 03, p. 79–92, 2021.
  12. S. Lee, “Open5gs is a c-language implementation of 5g core and epc, i.e. the core network of nr/lte network (release-16). https://open5gs.org/open5gs/.” [Online]. Available: https://open5gs.org/open5gs/
  13. S. Barrachina-Muñoz, M. Payaró, and J. Mangues-Bafalluy, “Cloud-native 5g experimental platform with over-the-air transmissions and end-to-end monitoring,” in 2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP).   IEEE, 2022, pp. 692–697.
  14. J. F. Alcalde Cespedes, “Log-based monitoring, detection and automated correction of anomalies in the 5g core,” B.S. thesis, Universitat Politècnica de Catalunya, 2022.
  15. X. Foukas, F. Sardis, F. Foster, M. K. Marina, M. A. Lema, and M. Dohler, “Experience building a prototype 5g testbed,” in Proceedings of the Workshop on Experimentation and Measurements in 5G, 2018, pp. 13–18.
  16. 3GPP, “Architecture enhancements for 5G System (5GS) to support network data analytics services,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 23.288, 2022, version 17.5.0. [Online]. Available: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3579
  17. V. Jain, H.-T. Chu, S. Qi, C.-A. Lee, H.-C. Chang, C.-Y. Hsieh, K. Ramakrishnan, and J.-C. Chen, “L25gc: a low latency 5g core network based on high-performance nfv platforms,” in Proceedings of the ACM SIGCOMM 2022 Conference, 2022, pp. 143–157.
  18. Y. Liu, Q. Li, Q. Cao, Z. Huang, Y. Li, and Y. Fan, “Evaluation of free5gc forwarding performance on private and public clouds,” in 2022 IEEE Cloud Summit, 2022, pp. 9–16.
  19. S. Lee and M.-K. Shin, “Federated learning over private 5g networks,” in Proceedings of the Twenty-Third International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing, 2022, pp. 295–296.
  20. S. Chen, C.-N. Lee, and M.-F. Lee, “Realization of 5g network slicing using open source softwares,” in 2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC).   IEEE, 2020, pp. 1549–1556.
  21. N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp, and C. Bonnet, “Openairinterface: A flexible platform for 5g research,” ACM SIGCOMM Computer Communication Review, vol. 44, no. 5, pp. 33–38, 2014.
  22. A. Chouman, D. Manias, and A. Shami, “Towards supporting intelligence in 5G/6G core networks: NWDAF implementation and initial analysis,” in 2022 International Wireless Communications and Mobile Computing Conference (IWCMC), 2022, pp. 324–329.
  23. D. Manias, A. Chouman, and A. Shami, “An nwdaf approach to 5g core network signaling traffic: Analysis and characterization,” in 2022 IEEE Global Communications Conference (GLOBECOM), 2022.
  24. D. M. Manias, A. Chouman, and A. Shami, “A model drift detection and adaptation framework for 5g core networks,” in 2022 IEEE International Mediterranean Conference on Communications and Networking (MeditCom).   IEEE, 2022, pp. 197–202.
  25. T. Sylla, L. Mendiboure, M. Berbineau, R. Singh, J. Soler, and M. S. Berger, “Emu5gnet: An open-source emulator for 5g software-defined networks,” in 2022 18th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob).   IEEE, 2022, pp. 474–477.
  26. N. Apostolakis, M. Gramaglia, and P. Serrano, “Design and validation of an open source cloud native mobile network,” IEEE Communications Magazine, vol. 60, no. 11, pp. 66–72, 2022.
  27. C. S. Choudhari, R. Patil, and S. Saraf, “Deployment of 5g core for 5g private networks,” in 2022 International Conference on Industry 4.0 Technology (I4Tech).   IEEE, 2022, pp. 1–6.
  28. O.-M. Ungureanu and C. Vlădeanu, “Leveraging the cloud-native approach for the design of 5g nextgen core functions,” in 2022 14th International Conference on Communications (COMM).   IEEE, 2022, pp. 1–7.
  29. T.-J. Tan, F.-L. Weng, W.-T. Hu, J.-C. Chen, and C.-Y. Hsieh, “A reliable intelligent routing mechanism in 5g core networks,” in Proceedings of the 26th Annual International Conference on Mobile Computing and Networking, 2020, pp. 1–3.
  30. F. Kavehmadavani, V.-D. Nguyen, T. X. Vu, and S. Chatzinotas, “Intelligent traffic steering in beyond 5g open ran based on lstm traffic prediction,” IEEE Transactions on Wireless Communications, 2023.
  31. Aligungr, “Ueransim: Open source 5g ue and ran (gnodeb) implementation. https://github.com/aligungr/ueransim.” [Online]. Available: https://github.com/aligungr/UERANSIM
  32. S. Gilmore and J. Hillston, “The pepa workbench: A tool to support a process algebra-based approach to performance modelling,” Computer Performance Evaluation, vol. 794, pp. 353–368, 1994.
  33. D. Sattar and A. Matrawy, “Optimal slice allocation in 5g core networks,” IEEE Networking Letters, vol. 1, no. 2, pp. 48–51, 2019.
  34. D. Dietrich, C. Papagianni, P. Papadimitriou, and J. S. Baras, “Network function placement on virtualized cellular cores,” in 2017 9th International conference on communication systems and networks (COMSNETS).   IEEE, 2017, pp. 259–266.
  35. D. Sattar and A. Matrawy, “Towards secure slicing: Using slice isolation to mitigate ddos attacks on 5g core network slices,” in 2019 IEEE Conference on Communications and Network Security (CNS).   IEEE, 2019, pp. 82–90.
  36. M. Corici, E. Troudt, and T. Magedanz, “An organic 6g core network architecture,” in 2022 25th Conference on Innovation in Clouds, Internet and Networks (ICIN).   IEEE, 2022, pp. 1–7.
  37. L. Osmani, T. Kauppinen, M. Komu, and S. Tarkoma, “Multi-cloud connectivity for kubernetes in 5g networks,” IEEE Communications Magazine, vol. 59, no. 10, pp. 42–47, 2021.
  38. S. Homma, T. Miyasaka, S. Matsushima, and D. Voyer, “User plane protocol and architectural analysis on 3gpp 5g system.” [Online]. Available: https://datatracker.ietf.org/doc/draft-ietf-dmm-5g-uplane-analysis/02/
  39. Western-OC2-Lab, “Western-oc2-lab/5g-core-networks-datasets. https://github.com/western-oc2-lab/5g-core-networks-datasets.” [Online]. Available: https://github.com/Western-OC2-Lab/5G-Core-Networks-Datasets
  40. P. Rost, A. Banchs, I. Berberana, M. Breitbach, M. Doll, H. Droste, C. Mannweiler, M. A. Puente, K. Samdanis, and B. Sayadi, “Mobile network architecture evolution toward 5g,” IEEE Communications Magazine, vol. 54, no. 5, pp. 84–91, 2016.
  41. “Network data analytics function (nwdaf),” Oct 2021. [Online]. Available: https://radcom.com/network-data-analytics-function-nwdaf/
  42. Nokia, ““5g core (5gc)”,” https://www.nokia.com/networks/portfolio/5g-core/ (accessed Jan. 9, 2022).
  43. “Apache kafka. https://kafka.apache.org/.” [Online]. Available: https://kafka.apache.org/
  44. B. Koné, A. D. Kora, and B. Niang, “Network resource management and core network slice implementation: A testbed for rural connectivity,” in 2022 45th International Conference on Telecommunications and Signal Processing (TSP).   IEEE, 2022, pp. 200–205.
  45. M. Wagner, “Ski overview. https://docs.nubeva.com/en/latest/files/introduction.html.” [Online]. Available: https://docs.nubeva.com/en/latest/files/Introduction.html
  46. S. Morgan, “Cybercrime to cost the world $10.5 trillion annually by 2025,” Nov 2020. [Online]. Available: https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/
  47. C. Stouffer, “115 cybersecurity statistics + trends to know in 2023,” Sep 2022. [Online]. Available: https://us.norton.com/blog/emerging-threats/cybersecurity-statistics
  48. Microsoft, “Hafnium targeting exchange servers with 0-day exploits,” Mar 2021. [Online]. Available: https://www.microsoft.com/en-us/security/blog/2021/03/02/hafnium-targeting-exchange-servers/
  49. NVIDIA, “Nvidia support,” Mar 2022. [Online]. Available: https://nvidia.custhelp.com/app/answers/detail/a_id/5333/~/security-notice%3A-nvidia-response-to-security-incident---march-2022
  50. T-Mobile, “Mobile informing impacted customers about unauthorized activity - t-mobile newsroom,” Jan 2023. [Online]. Available: https://www.t-mobile.com/news/business/customer-information
  51. AWS, 2020. [Online]. Available: https://aws-shield-tlr.s3.amazonaws.com/2020-Q1_AWS_Shield_TLR.pdf
  52. Cloudflare, “What is penetration testing? — what is pen testing? — cloudflare.” [Online]. Available: https://www.cloudflare.com/learning/security/glossary/what-is-penetration-testing/
  53. Cisco, “What is penetration testing? - pen testing,” Oct 2023. [Online]. Available: https://www.cisco.com/c/en/us/products/security/what-is-pen-testing.html
  54. P. Deotale, “Unlock the potential of ai in the telecommunications industry,” Jul 2023. [Online]. Available: https://www.microsoft.com/en-us/industry/blog/telecommunications/2023/04/11/unlock-the-potential-of-ai-in-the-telecommunications-industry/
  55. E. Kapassa, M. Touloupou, P. Stavrianos, and D. Kyriazis, “Dynamic 5g slices for iot applications with diverse requirements,” in 2018 Fifth International Conference on Internet of Things: Systems, Management and Security.   IEEE, 2018, pp. 195–199.
  56. T. Q. Duong, L. D. Nguyen, B. Narottama, J. A. Ansere, D. Van Huynh, and H. Shin, “Quantum-inspired real-time optimisation for 6g networks: Opportunities, challenges, and the road ahead,” IEEE Open Journal of the Communications Society, 2022.
  57. Y. Wang, J. E. Kim, and K. Suresh, “Opportunities and challenges of quantum computing for engineering optimization,” Journal of Computing and Information Science in Engineering, vol. 23, no. 6, 2023.
  58. L. Lu, C. Liu, C. Zhang, Z. Hu, S. Lin, Z. Liu, M. Zhang, X. Liu, and J. Chen, “Architecture for self-evolution of 6g core network based on intelligent decision making,” Electronics, vol. 12, no. 15, p. 3255, 2023.
  59. X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, and M. Chen, “In-edge ai: Intelligentizing mobile edge computing, caching and communication by federated learning,” Ieee Network, vol. 33, no. 5, pp. 156–165, 2019.
  60. H. Yang, A. Alphones, Z. Xiong, D. Niyato, J. Zhao, and K. Wu, “Artificial-intelligence-enabled intelligent 6g networks,” IEEE Network, vol. 34, no. 6, pp. 272–280, 2020.
  61. D. M. Manias and A. Shami, “Making a case for federated learning in the internet of vehicles and intelligent transportation systems,” IEEE Network, vol. 35, no. 3, pp. 88–94, 2021.
  62. K. B. Letaief, Y. Shi, J. Lu, and J. Lu, “Edge artificial intelligence for 6g: Vision, enabling technologies, and applications,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 1, pp. 5–36, 2021.
  63. P. Rugeland, “Hexa-x: 6g technology and its evolution so far - ericsson,” Jul 2021. [Online]. Available: https://www.ericsson.com/en/blog/2021/7/hexa-x-6g-technology-6g-use-cases
  64. L. Chang, Z. Zhang, P. Li, S. Xi, W. Guo, Y. Shen, Z. Xiong, J. Kang, D. Niyato, X. Qiao et al., “6g-enabled edge ai for metaverse: Challenges, methods, and future research directions,” Journal of Communications and Information Networks, vol. 7, no. 2, pp. 107–121, 2022.
  65. F. Tang, X. Chen, M. Zhao, and N. Kato, “The roadmap of communication and networking in 6g for the metaverse,” IEEE Wireless Communications, 2022.
  66. H. Peng, P.-C. Chen, P.-H. Chen, Y.-S. Yang, C.-C. Hsia, and L.-C. Wang, “6g toward metaverse: Technologies, applications, and challenges,” in 2022 IEEE VTS Asia Pacific Wireless Communications Symposium (APWCS).   IEEE, 2022, pp. 6–10.
  67. E. Fersman, “What are cobots and how will they impact the future of manufacturing?” https://www.ericsson.com/en/blog/2020/5/what-are-cobots-and-the-future-of-manufacturing (accessed Nov. 1, 2023), May 2020.
  68. B. Han and H. D. Schotten, “Multi-sensory hmi for human-centric industrial digital twins: A 6g vision of future industry,” in 2022 IEEE Symposium on Computers and Communications (ISCC).   IEEE, 2022, pp. 1–7.
  69. S. E. Trevlakis, A.-A. A. Boulogeorgos, D. Pliatsios, J. Querol, K. Ntontin, P. Sarigiannidis, S. Chatzinotas, and M. Di Renzo, “Localization as a key enabler of 6g wireless systems: A comprehensive survey and an outlook,” IEEE Open Journal of the Communications Society, 2023.
  70. Q. Guo, F. Tang, T. K. Rodrigues, and N. Kato, “Five disruptive technologies in 6g to support digital twin networks,” IEEE Wireless Communications, 2023.
  71. X. Lin, L. Kundu, C. Dick, E. Obiodu, T. Mostak, and M. Flaxman, “6g digital twin networks: From theory to practice,” IEEE Communications Magazine, 2023.
  72. A. Alkhateeb, S. Jiang, and G. Charan, “Real-time digital twins: Vision and research directions for 6g and beyond,” IEEE Communications Magazine, 2023.
  73. M. Vaezi, A. Azari, S. R. Khosravirad, M. Shirvanimoghaddam, M. M. Azari, D. Chasaki, and P. Popovski, “Cellular, wide-area, and non-terrestrial iot: A survey on 5g advances and the road toward 6g,” IEEE Communications Surveys & Tutorials, vol. 24, no. 2, pp. 1117–1174, 2022.
  74. C. Pietschmann, “Iot security architecture: Trust zones and boundaries,” https://build5nines.com/iot-security-architecture-trust-zones-and-boundaries/, Jul 2020.
Citations (3)

Summary

We haven't generated a summary for this paper yet.