Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ultrasound Imaging based on the Variance of a Diffusion Restoration Model (2403.15316v2)

Published 22 Mar 2024 in eess.IV, cs.CV, and cs.LG

Abstract: Despite today's prevalence of ultrasound imaging in medicine, ultrasound signal-to-noise ratio is still affected by several sources of noise and artefacts. Moreover, enhancing ultrasound image quality involves balancing concurrent factors like contrast, resolution, and speckle preservation. Recently, there has been progress in both model-based and learning-based approaches addressing the problem of ultrasound image reconstruction. Bringing the best from both worlds, we propose a hybrid reconstruction method combining an ultrasound linear direct model with a learning-based prior coming from a generative Denoising Diffusion model. More specifically, we rely on the unsupervised fine-tuning of a pre-trained Denoising Diffusion Restoration Model (DDRM). Given the nature of multiplicative noise inherent to ultrasound, this paper proposes an empirical model to characterize the stochasticity of diffusion reconstruction of ultrasound images, and shows the interest of its variance as an echogenicity map estimator. We conduct experiments on synthetic, in-vitro, and in-vivo data, demonstrating the efficacy of our variance imaging approach in achieving high-quality image reconstructions from single plane-wave acquisitions and in comparison to state-of-the-art methods. The code is available at: https://github.com/Yuxin-Zhang-Jasmine/DRUSvar

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. V. Perrot, M. Polichetti, F. Varray, and D. Garcia, “So you think you can DAS?” Ultrasonics, vol. 111, p. 106309, 2021.
  2. E. Ozkan, V. Vishnevsky, and O. Goksel, “Inverse problem of ultrasound beamforming with sparsity constraints and regularization,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 65, pp. 356–365, 2018.
  3. S. Goudarzi, A. Basarab, and H. Rivaz, “Inverse problem of ultrasound beamforming with denoising-based regularized solutions,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 69, 2022.
  4. D. Perdios, M. Vonlanthen, F. Martinez, M. Arditi, and J.-P. Thiran, “NN-based image reconstruction method for ultrafast ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 69, pp. 1154–1168, 2022.
  5. R. J. G. van Sloun, R. Cohen, and Y. C. Eldar, “Deep learning in ultrasound imaging,” Proc. IEEE, vol. 108, pp. 11–29, 2020.
  6. N. Chennakeshava, B. Luijten, O. Drori, M. Mischi, Y. C. Eldar, and R. J. G. van Sloun, “High resolution plane wave compounding through deep proximal learning,” in IEEE IUS, 2020.
  7. J. Zhang, Q. He, Y. Xiao, H. Zheng, C. Wang, and J. Luo, “Ultrasound image reconstruction from plane wave radio-frequency data by self-supervised deep neural network,” Med. Image Anal., vol. 70, 2021.
  8. J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” NeurIPS, vol. 33, pp. 6840–6851, 2020.
  9. A. Q. Nichol and P. Dhariwal, “Improved denoising diffusion probabilistic models,” in ICML, 2021, pp. 8162–8171.
  10. P. Dhariwal and A. Nichol, “Diffusion models beat GANs on image synthesis,” NeurIPS, vol. 34, pp. 8780–8794, 2021.
  11. B. Kawar, M. Elad, S. Ermon, and J. Song, “Denoising diffusion restoration models,” NeurIPS, vol. 35, pp. 23 593–23 606, 2022.
  12. J. Song, A. Vahdat, M. Mardani, and J. Kautz, “Pseudoinverse-guided diffusion models for inverse problems,” in ICLR, 2022.
  13. H. Chung, J. Kim, M. T. Mccann, M. L. Klasky, and J. C. Ye, “Diffusion posterior sampling for general noisy inverse problems,” in ICLR, 2022.
  14. Y. Song, L. Shen, L. Xing, and S. Ermon, “Solving inverse problems in medical imaging with score-based generative models,” in ICLR, 2022.
  15. H. Chung and J. C. Ye, “Score-based diffusion models for accelerated MRI,” Med. Image Anal., vol. 80, p. 102479, 2022.
  16. Y. Zhang, C. Huneau, J. Idier, and D. Mateus, “Ultrasound image reconstruction with denoising diffusion restoration models,” in DGM4MICCAI, 2023, pp. 193–203.
  17. H. Asgariandehkordi, S. Goudarzi, A. Basarab, and H. Rivaz, “Deep ultrasound denoising using diffusion probabilistic models,” in IEEE IUS, 2023.
  18. T. S. Stevens, F. C. Meral, J. Yu, I. Z. Apostolakis, J.-L. Robert, and R. J. Van Sloun, “Dehazing ultrasound using diffusion models,” IEEE Trans. Med. Imaging, 2024.
  19. E. Horwitz and Y. Hoshen, “Conffusion: Confidence intervals for diffusion models,” arXiv:2211.09795, 2022.
  20. J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,” in ICLR, 2021.
  21. J. Ng, R. Prager, N. Kingsbury, G. Treece, and A. Gee, “Wavelet restoration of medical pulse-echo ultrasound images in an EM framework,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 54, 2007.
  22. T. Chernyakova, D. Cohen, M. Shoham, and Y. C. Eldar, “iMAP beamforming for high-quality high frame rate imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 66, 2019.
  23. G. Ramos-Llordén, G. Vegas-Sánchez-Ferrero, M. Martin-Fernandez, C. Alberola-López, and S. Aja-Fernández, “Anisotropic diffusion filter with memory based on speckle statistics for ultrasound images,” IEEE Trans. Image Process., vol. 24, pp. 345–358, 2014.
  24. H. Lee, M. H. Lee, S. Youn, K. Lee, H. M. Lew, and J. Y. Hwang, “Speckle reduction via deep content-aware image prior for precise breast tumor segmentation in an ultrasound image,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 69, pp. 2638–2650, 2022.
  25. O. Russakovsky et al., “Imagenet large scale visual recognition challenge,” Int. J. Comput. Vis., vol. 115, pp. 211–252, 2015.
  26. A. Rodriguez-Molares et al., “The generalized contrast-to-noise ratio: A formal definition for lesion detectability,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 67, pp. 745–759, 2020.
  27. H. Liebgott, A. Rodriguez-Molares, F. Cervenansky, J. Jensen, and O. Bernard, “Plane-wave imaging challenge in medical ultrasound,” in IEEE IUS, 2016.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yuxin Zhang (91 papers)
  2. Clément Huneau (4 papers)
  3. Jérôme Idier (21 papers)
  4. Diana Mateus (28 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.