Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Event-Triggered State Estimation Through Confidence Level (2403.15289v1)

Published 22 Mar 2024 in eess.SY and cs.SY

Abstract: This paper considers the state estimation problem for discrete-time linear systems under event-triggered scheme. In order to improve performance, a novel event-triggered scheme based on confidence level is proposed using the chi-square distribution and mild regularity assumption. In terms of the novel event-triggered scheme, a minimum mean squared error (MMSE) state estimator is proposed using some results presented in this paper. Two algorithms for communication rate estimation of the proposed MMSE state estimator are developed where the first algorithm is based on information with one-step delay, and the second algorithm is based on information with two-step delay. The performance and effectiveness of the proposed MMSE state estimator and the two communication rate estimation algorithms are illustrated using a target tracking scenario.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results in networked control systems”, Proc. IEEE, vol. 95, no. 1, pp. 138-162, Jan. 2007.
  2. S. Wildhagen, J. Berberich, M. Hertneck, and F. Allgöwer, “Data-driven analysis and controller design for discrete-time systems under aperiodic sampling”, IEEE Trans. Autom. Control, vol. 68, no. 6, pp. 3210-3225, Jun. 2023.
  3. J. Shang, H. Yu, and T. Chen, “Worst-case stealthy attacks on stochastic event-based state estimation”, IEEE Trans. Autom. Control, vol. 67, no. 4, pp. 2052-2059, Apr. 2022.
  4. W. Liu, P. Shi, and S. Wang, “Distributed Kalman filtering through trace proximity”, IEEE Trans. Autom. Control, vol. 67, no. 9, pp. 4908-4915, Sep. 2022.
  5. J. Hu, B. Lennox, and F. Arvin, “Robust formation control for networked robotic systems using negative imaginary dynamics”, Automatica, vol. 140, 2022, Art. no. 110235.
  6. I. Z. Petric, P. Mattavelli, and S. Buso, “Multi-sampled grid-connected VSCs: A path toward inherent admittance passivity”, IEEE Trans. Power Electron., vol. 37, no. 7, pp. 7675-7687, Jul. 2022.
  7. J. J. Xiao, A. Ribeiro, Z. Q. Luo, and G. B. Giannakis, “Distributed compression-estimation using wireless sensor networks”, IEEE Trans. Signal Process. Mag., vol. 23, no. 4, pp. 27-41, Jul. 2006.
  8. A. Ribeiro, G. B. Giannakis, and S. I. Roumeliotis, “SOI-KF: Distributed Kalman filtering with low-cost communications using the sign of innovations”, IEEE Trans. Signal Process., vol. 54, no. 12, pp. 4782-4795, Dec. 2006.
  9. E. J. Msechu, S. I. Roumeliotis, A. Ribeiro, and G. B. Giannakis, “Decentralized quantized Kalman filtering with scalable communication cost”, IEEE Trans. Signal Process., vol. 56, no. 8, pp. 3727-3741, Aug. 2008.
  10. J. Wu, Q. S. Jia, K. H. Johansson, and L. Shi, “Event-based sensor data scheduling: Trade-off between communication rate and estimation quality”, IEEE Trans. Autom. Control, vol. 58, no. 4, pp. 1041-1046, Apr. 2013.
  11. G. M. Lipsa and N. C. Martins, “Remote state estimation with communication costs for first-order LTI systems”, IEEE Trans. Autom. Control, vol. 56, no. 9, pp. 2013-2025, Sep. 2011.
  12. G. Battistelli, A. Benavoli, and L. Chisci, “Data-driven communication for state estimation with sensor networks”, Automatica, vol. 48, no. 5, pp. 926-935, May 2012.
  13. J. Sijs and M. Lazar, “Event based state estimation with time synchronous updates”, IEEE Trans. Autom. Control, vol. 57, no. 10, pp. 2650-2655, Oct. 2012.
  14. K. You and L. Xie, “Kalman filtering with scheduled measurements”, IEEE Trans. Signal Process., vol. 61, no. 6, pp. 1520-1530, Mar. 2013.
  15. D. Shi, T. Chen, and L. Shi, “An event-triggered approach to state estimation with multiple point- and set-valued measurements”, Automatica, vol. 50, no. 6, pp. 1641-1648, Jun. 2014.
  16. S. Trimpe and R. D’Andrea, “Event-based state estimation with variance-based triggering”, IEEE Trans. Autom. Control, vol. 59, no. 12, pp. 3266-3281, Dec. 2014.
  17. D. Shi, T. Chen, and L. Shi, “On set-valued Kalman filtering and its application to event-based state estimation”, IEEE Trans. Autom. Control, vol. 60, no. 5, pp. 1275-1290, May 2015.
  18. D. Han, Y. Mo, J. Wu, S. Weerakkody, B. Sinopoli, and L. Shi, “Stochastic event-triggered sensor schedule for remote state estimation”, IEEE Trans. Autom. Control, vol. 60, no. 10, pp. 2661-2675, Oct. 2015.
  19. S. Weerakkody, Y. Mo, B. Sinopoli, D. Han, and L. Shi, “Multi-sensor scheduling for state estimationwith event-based, stochastic triggers”, IEEE Trans. Autom. Control, vol. 61, no. 9, pp. 2695-2701, Sep. 2016.
  20. A. Mohammadi and K. N. Plataniotis, “Event-based estimation with information-based triggering and adaptive update”, IEEE Trans. Signal Process., vol. 65, no. 18, pp. 4924-4939, Sep. 2017.
  21. L. He, J. Chen, and Y. Qi, “Event-based state estimation: Optimal algorithm with generalized closed skew normal distribution”, IEEE Trans. Autom. Control, vol. 64, no. 1, pp. 321-328, Jan. 2019.
  22. Z. Hu, B. Chen, R. Wang, and L. Yu, “Remote state estimation with posterior-based stochastic event-triggered schedule”, IEEE Trans. Autom. Control, vol. 69, no. 2, pp. 1194-1201, Feb. 2024.
  23. H. Yu, J. Shang, and T. Chen, “On stochastic and deterministic event-based state estimation”, Automatica, vol. 123, 2021, Art. no. 109314.
  24. G. Battistelli, L. Chisci, and D. Selvi, “A distributed Kalman filter with event-triggered communication and guaranteed stability”, Automatica, vol. 93, pp. 75-82, Jul. 2018.
  25. M. Miskowicz, “Send-on-delta concept: An event-based data reporting strategy”, Sensors, vol. 6, no. 1, pp. 49-63, Jan. 2006.
  26. R. Cogill, S. Lall, and J. P. Hespanha, “A constant factor approximation algorithm for event-based sampling”, in Proc. 2007 Amer. Control Conf., New York, USA, Jul. 2007, pp. 305-311.
  27. L. Li, M. Lemmon, and X. Wang, “Event-triggered state estimation in vector linear processes”, in Proc. 2010 Amer. Control Conf., Baltimore, USA, Jun. 2010, pp. 2138-2143.
  28. R. A. Singer, “Estimating optimal tracking filter performance for manned maneuvering targets”, IEEE Trans. Aerosp. Electron. Syst., vol. AES-6, no. 4, pp. 473-483, Jul. 1970.

Summary

We haven't generated a summary for this paper yet.