Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamics of a memory-based diffusion model with spatial heterogeneity and nonlinear boundary condition (2403.14969v1)

Published 22 Mar 2024 in math.DS

Abstract: In this work, we study the dynamics of a spatially heterogeneous single population model with the memory effect and nonlinear boundary condition. By virtue of the implicit function theorem and Lyapunov-Schmidt reduction, spatially nonconstant positive steady state solutions appear from two trivial solutions, respectively. By using bifurcation analysis, the Hopf bifurcation associated with one spatially nonconstant positive steady state is found to occur. The results complement the existing ones. Specifically, it is found that with the interaction of spatial heterogeneity and nonlinear boundary condition, when the memory term is stronger than the interaction of the interior reaction term and the boundary one, the memory-based diffusive model has a single stability switch from stability to instability, with the increase of the delayed memory value. Therefore, the memory delay will lead to a single stability switch of such memory-based diffusive model and consequently the Hopf bifurcation will happen in the model.

Summary

We haven't generated a summary for this paper yet.